98%
921
2 minutes
20
Certain E3 ubiquitin ligases play a key role in the abscisic acid (ABA) pathway by targeting clade A type 2C protein phosphatases (PP2Cs) for degradation. At early stages of ABA signaling, degradation of PP2Cs is a complementary step to PP2Cs inhibition by ABA receptors. At later steps, protein levels of PP2Cs are increased as a negative feedback mechanism. Subsequently, E3 ligases targeting PP2Cs are critical to recover the basal PP2C levels and reset the ABA signaling. BTB/POZ AND MATH DOMAIN proteins (BPMs) are substrate adaptors of a multimeric cullin3-RING based E3 ligase and target for degradation clade A PP2Cs. In this chapter, we provide a detailed protocol to assess the ubiquitination of PP2CA, a clade A PP2C, mediated by BPMs using agarose-immobilised p62-derived ubiquitin-associated (UBA) domain, which efficiently binds ubiquitinated proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-0716-2156-1_4 | DOI Listing |
Neurochem Int
August 2025
Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Suita, Osaka, 565-0871, Japan.
Lysosomes play a central role in the degradation of intracellular substances. Through this degradative capacity, lysosomes contribute to biological homeostasis and are particularly critical for the maintenance and function of neurons. Deficiencies in various lysosomal proteins cause a group of conditions known as lysosomal storage disorders, which often present with developmental delay and other neurological symptoms.
View Article and Find Full Text PDFViruses
August 2025
Department of Pathology, Microbiology and Immunology, New York Medical College, New York, NY 10595, USA.
Epstein-Barr Virus (EBV) is a causative agent of infectious mononucleosis and is strongly associated with Burkitt lymphoma, Hodgkin lymphoma, and nasopharyngeal carcinoma. EBV encodes a deubiquitinating enzyme, BPLF1, which is important for infectious virus production, B-cell immortalization, and tumorigenesis. To elucidate BPLF1's role, an affinity-based mass spectrometry screen was performed, which suggested that BPLF1 and mTOR interact.
View Article and Find Full Text PDFOncogene
August 2025
Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA.
Leucine zipper like transcription regulator 1 (LZTR1) is amplified in acral melanomas, is required for melanocytes and melanoma cell proliferation, and it induces anchorage-independent growth, by yet unknown mechanisms. We therefore performed comprehensive studies to identify its activity in melanomas employing proximity biotinylation and co-immunoprecipitation combined with LC-MS/MS proteomics and molecular characterization. The results show that LZTR1 regulates the ubiquitin proteasome system in melanoma cells and also associates with actin-related proteins and actin cytoskeleton organization.
View Article and Find Full Text PDFAutophagy Rep
August 2025
Department of Biology, University of Waterloo, Waterloo, ON, Canada.
Protein mislocalization and aggregation are hallmark features in neurodegeneration. As proteins mislocalize, proteostasis deficiency and protein aggregation typically follow. Autophagy is a crucial pathway for the removal of protein aggregates to maintain neuronal health, but is impaired in various neurodegenerative diseases, including Huntington disease (HD).
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
August 2025
Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China.
Ubiquitination is one of the most widely distributed, structurally diverse, and functionally important post-translational modifications for proteins in eukaryotic cells. At present, the methods for detecting ubiquitination signals mainly include immunological detection based on specific antibodies, mass spectrometry, and detection based on ubiquitin-binding domain (UBD), which together constitute a tool library for studying ubiquitination signals. Our team has previously developed a high-throughput detection technology based on an artificial tandem hybrid ubiquitin-binding domain (ThUBD), which achieves universal and highly sensitive detection of all polyubiquitin chain modification signals.
View Article and Find Full Text PDF