98%
921
2 minutes
20
The dynamic properties of protein molecules are involved in the relationship between their structure and function. Time-resolved X-ray observation enables capturing the structures of biomolecules with picometre-scale precision. However, this technique has yet to be implemented in living animals. Here, we examined diffracted X-ray blinking (DXB) and diffracted X-ray tracking (DXT) to observe the dynamics of a protein located on intestinal cells in adult . This tissue-specific DXB was examined at temperatures from 20 °C to -10 °C for a recombinant ice-binding protein from (AnpIBP) connected with the cells through a transmembrane CD4 protein equipped with a glycine-serine linker. AnpIBP inhibits ice growth at subzero temperatures by binding to ice crystals. We found that the rotational motion of AnpIBP decreases at -10 °C. In contrast, the motion of the AnpIBP mutant, which has a defective ice-binding ability, did not decrease at -10 °C. The twisting and tilting motional speeds of AnpIBPs measured above 5 °C by DXT were always higher than those of the defective AnpIBP mutant. These results suggest that wild-type AnpIBP is highly mobile in solution, and it is halted at subzero temperatures through ice binding. DXB and DXT allow for exploring protein behaviour in live animals with subnano resolution precision.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8819013 | PMC |
http://dx.doi.org/10.1016/j.bbrep.2022.101224 | DOI Listing |
Environ Monit Assess
September 2025
School of Geological Survey, China University of Geosciences, Wuhan, 430074, China.
Cadmium (Cd) contamination in water poses a critical global challenge. A novel nanocomposite, montmorillonite (Mt)-supported nanoscale zero-valent iron (Mt-nZVI), synthesized by liquid phase reduction, offers a promising method for effectively removing Cd. The material underwent characterization through various techniques, including X-ray diffraction (XRD) and Scanning Electron Microscope(SEM).
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
College of Textiles, Donghua University, Shanghai, 201620, China; Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai, 201620, China. Electronic address:
In this study, a novel bleaching method for ramie cellulose fibers with low oxidative damage was developed by utilizing the properties of sodium percarbonate contained in tea saponin, which slowly releases hydrogen peroxide in the catalytic oxidation system of N-hydroxyphthalimide (NHPI). First, the bleaching process was optimized using response surface design, followed by comparison and characterization of fiber properties prepared under different bleaching systems. Finally, the energy consumption, water consumption, and toxicity of the NHPI/tea saponin system were evaluated.
View Article and Find Full Text PDFBioelectrochemistry
September 2025
Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, 11371 Cairo, Egypt. Electronic address:
The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.
View Article and Find Full Text PDFChemosphere
September 2025
Department of Materials Design and Innovation, University at Buffalo, NY, 14260, USA. Electronic address:
Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.
View Article and Find Full Text PDFAppl Radiat Isot
September 2025
Kahramanmaraş İstiklal University, Department of Energy Systems Engineering, Kahramanmaraş, Türkiye.
The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.
View Article and Find Full Text PDF