Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.abj3944DOI Listing

Publication Analysis

Top Keywords

human oocytes
24
spindle instability
16
instability human
12
mouse oocytes
12
oocytes
10
human
8
bovine porcine
8
amtoc-free mouse
8
instability
5
spindle
5

Similar Publications

Problem: Endometriosis is a chronic inflammatory disease that leads to pelvic pain and infertility. Recent studies have indicated that immunological, endocrine, biochemical, and genetic irregularities, along with suboptimal quality of oocytes, embryos, and the endometrial environment, significantly impact infertility associated with endometriosis. Ectopic endometrial cells in endometriosis have the capacity to avoid apoptosis.

View Article and Find Full Text PDF

Zona pellucida glycoprotein-1 (ZP1) is essential for maintaining oocyte structural integrity and facilitating fertilization. Mutations in are strongly associated with primary infertility disorders such as fertilization failure and empty follicle syndrome; however, the absence of accurate experimental models has hindered mechanistic understanding and obscured the etiological basis of -related infertility. In this study, CRISPR/Cas9-mediated genome editing was employed to generate two -edited cynomolgus macaques ( ), designated #ZP1-1 (male) and #ZP1-2 (female).

View Article and Find Full Text PDF

The effects of apigenin, a plant flavonoid, were investigated using the two-electrode voltage-clamp technique on the function of the cloned α7 subunit of the human nicotinic acetylcholine (α7-nACh) receptor expressed in oocytes. Currents induced by ACh (100 μM) were reversibly potentiated by apigenin with an EC value of 5.4 µM in a voltage-independent manner.

View Article and Find Full Text PDF

Introduction: Several studies indicate that a specific genotype profile could influence ovarian sensitivity to exogenous gonadotropin. However, most of the previous studies were observational and retrospective and thereby more prone to bias. The aim of this study was to evaluate the impact of gonadotropin single nucleotide polymorphisms (SNPs) on the outcomes of fertilization (IVF) in infertile patients undergoing their first ovarian stimulation (OS) cycle.

View Article and Find Full Text PDF

GADD45A is Essential for Granulosa Cells Differentiation and Ovarian Reserve in Human and Mice.

J Cell Mol Med

September 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.

Diminished ovarian reserve (DOR) poses significant challenges in reproductive health, with emerging evidence implicating DNA damage repair pathways. While GADD45A is a critical regulator of DNA repair, cell cycle and apoptosis, its role in DOR pathogenesis remains unexplored. We employed transcriptome sequencing, qPCR and Western Blot analyses to compare GADD45A expression in granulosa cells (GCs) between DOR patients and controls.

View Article and Find Full Text PDF