98%
921
2 minutes
20
Widely used traditional supervised deep learning methods require a large number of training samples but often fail to generalize on unseen datasets. Therefore, a more general application of any trained model is quite limited for medical imaging for clinical practice. Using separately trained models for each unique lesion category or a unique patient population will require sufficiently large curated datasets, which is not practical to use in a real-world clinical set-up. Few-shot learning approaches can not only minimize the need for an enormous number of reliable ground truth labels that are labour-intensive and expensive, but can also be used to model on a dataset coming from a new population. To this end, we propose to exploit an optimization-based implicit model agnostic meta-learning (iMAML) algorithm under few-shot settings for medical image segmentation. Our approach can leverage the learned weights from diverse but small training samples to perform analysis on unseen datasets with high accuracy. We show that, unlike classical few-shot learning approaches, our method improves generalization capability. To our knowledge, this is the first work that exploits iMAML for medical image segmentation and explores the strength of the model on scenarios such as meta-training on unique and mixed instances of lesion datasets. Our quantitative results on publicly available skin and polyp datasets show that the proposed method outperforms the naive supervised baseline model and two recent few-shot segmentation approaches by large margins. In addition, our iMAML approach shows an improvement of 2%-4% in dice score compared to its counterpart MAML for most experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2022.105227 | DOI Listing |
J Appl Clin Med Phys
September 2025
Clinical Imaging Physics Group, Duke University Health System, Durham, North Carolina, USA.
Introduction: Medical physicists play a critical role in ensuring image quality and patient safety, but their routine evaluations are limited in scope and frequency compared to the breadth of clinical imaging practices. An electronic radiologist feedback system can augment medical physics oversight for quality improvement. This work presents a novel quality feedback system integrated into the Epic electronic medical record (EMR) at a university hospital system, designed to facilitate feedback from radiologists to medical physicists and technologist leaders.
View Article and Find Full Text PDFJ Eat Disord
September 2025
Center for Nutrition and Therapy (NuT), University of Applied Sciences Muenster, Corrensstraße 25, 48149, Muenster, Germany.
Eating disorders are primarily associated with women and an obsession with thinness. Recent research and social media content show that men are also concerned about their body image, striving for a muscular and athletic physique. To investigate eating disorder tendencies among male content creators with a mesomorphic body type (N = 26), a social media analysis was conducted on Instagram and TikTok over four weeks.
View Article and Find Full Text PDFLipids Health Dis
September 2025
Epidemiology, Medical Faculty, University of Augsburg, Stenglingstr. 2, Augsburg, 86156, Germany.
Background: This study aimed to investigate the gender-specific associations of skeletal muscle mass and fat mass with non-alcoholic fatty liver disease (NAFLD) and NAFLD-related liver fibrosis in two population-based studies.
Methods: Analyses were based on data from the MEGA (n = 238) and the MEIA study (n = 594) conducted between 2018 and 2023 in Augsburg, Germany. Bioelectrical impedance analysis was used to evaluate relative skeletal muscle mass (rSM) and SM index (SMI) as well as relative fat mass (rFM) and FM index (FMI); furthermore, the fat-to-muscle ratio was built.
BMC Neurol
September 2025
Department of Neurology, University Hospital, RWTH Aachen University, Pauwelsstrasse 30, Aachen, North Rhine-Westphalia, Germany.
Background: Cerebellar pathologies in adults can have a wide range of hereditary, acquired and sporadic-degenerative causes. Due to the frequency in daily hospital, especially intensive care, settings, electrolyte imbalances are an important, yet rare differential diagnosis. The hypomagnesemia-induced cerebellar syndrome (HiCS) constitutes a relevant disease entity with clinical and morphological variability due to a potential progression of symptoms and a promising causal treatment.
View Article and Find Full Text PDFClin Rheumatol
September 2025
The First College of Clinical Medical Science, Three Gorges University, Yichang, China.
Background: IgG4-related lung disease (IgG4-RLD) is a rare autoimmune condition. This study aims to systematically analyze the clinical characteristics of IgG4-RLD to enhance clinicians' awareness and improve patient outcomes.
Methods: This retrospective analysis investigates the clinical data of 20 patients diagnosed with IgG4-RLD at the Yichang Central People's Hospital between January 2019 and April 2025.