Publications by authors named "Debesh Jha"

The emergence of foundational models represents a paradigm shift in medical imaging, offering extraordinary capabilities in disease detection, diagnosis, and treatment planning. These large-scale artificial intelligence systems, trained on extensive multimodal and multi-center datasets, demonstrate remarkable versatility across diverse medical applications. However, their integration into clinical practice presents complex ethical challenges that extend beyond technical performance metrics.

View Article and Find Full Text PDF

Liver cirrhosis represents the end stage of chronic liver disease, characterized by extensive fibrosis and nodular regeneration that significantly increases mortality risk. While magnetic resonance imaging (MRI) offers a non-invasive assessment, accurately segmenting cirrhotic livers presents substantial challenges due to morphological alterations and heterogeneous signal characteristics. Deep learning approaches show promise for automating these tasks, but progress has been limited by the absence of large-scale, annotated datasets.

View Article and Find Full Text PDF

Computer-aided segmentation methods can assist medical personnel in improving diagnostic outcomes. While recent advancements like UNet and its variants have shown promise, they face a critical challenge: balancing accuracy with computational efficiency. Shallow encoder architectures in UNets often struggle to capture crucial spatial features, leading in inaccurate and sparse segmentation.

View Article and Find Full Text PDF

Pancreatitis is a major public health issue world-wide; studies show an increase in the number of people experiencing pancreatitis. Identifying peri-pancreatic edema is a pivotal indicator for identifying disease progression and prognosis, emphasizing the critical need for accurate detection and assessment in pancreatitis diagnosis and management. This study introduces a novel CT dataset sourced from 255 patients with pancreatic diseases, featuring annotated pancreas segmentation masks and corresponding diagnostic labels for peri-pancreatic edema condition.

View Article and Find Full Text PDF

Colorectal cancer is among the most common cause of cancer worldwide. Removal of precancerous polyps through early detection is essential to prevent them from progressing to colon cancer. We develop an advanced deep learning-based architecture, Transformer based Residual Upsampling Network (TransRUPNet) for automatic and real-time polyp segmentation.

View Article and Find Full Text PDF

Large-scale, big-variant, high-quality data are crucial for developing robust and successful deep-learning models for medical applications since they potentially enable better generalization performance and avoid overfitting. However, the scarcity of high-quality labeled data always presents significant challenges. This paper proposes a novel approach to address this challenge by developing controllable diffusion models for medical image synthesis, called DiffBoost.

View Article and Find Full Text PDF

Artificial Intelligence (AI) is reshaping healthcare through advancements in clinical decision support and diagnostic capabilities. While human expertise remains foundational to medical practice, AI-powered tools are increasingly matching or exceeding specialist-level performance across multiple domains, paving the way for a new era of democratized healthcare access. These systems promise to reduce disparities in care delivery across demographic, racial, and socioeconomic boundaries by providing high-quality diagnostic support at scale.

View Article and Find Full Text PDF

Automated volumetric segmentation of the pancreas on cross-sectional imaging is needed for diagnosis and follow-up of pancreatic diseases. While CT-based pancreatic segmentation is more established, MRI-based segmentation methods are understudied, largely due to a lack of publicly available datasets, benchmarking research efforts, and domain-specific deep learning methods. In this retrospective study, we collected a large dataset (767 scans from 499 participants) of T1-weighted (T1 W) and T2-weighted (T2 W) abdominal MRI series from five centers between March 2004 and November 2022.

View Article and Find Full Text PDF

Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Therefore, there is a need for an automated system that can flag missed polyps during the examination and improve patient care.

View Article and Find Full Text PDF

Domain generalization (DG) approaches intend to extract domain invariant features that can lead to a more robust deep learning model. In this regard, style augmentation is a strong DG method taking advantage of instance-specific feature statistics containing informative style characteristics to synthetic novel domains. While it is one of the state-of-the-art methods, prior works on style augmentation have either disregarded the interdependence amongst distinct feature channels or have solely constrained style augmentation to linear interpolation.

View Article and Find Full Text PDF

Knowledge distillation (KD) has demonstrated remarkable success across various domains, but its application to medical imaging tasks, such as kidney and liver tumor segmentation, has encountered challenges. Many existing KD methods are not specifically tailored for these tasks. Moreover, prevalent KD methods often lack a careful consideration of 'what' and 'from where' to distill knowledge from the teacher to the student.

View Article and Find Full Text PDF

Polyps are well-known cancer precursors identified by colonoscopy. However, variability in their size, appearance, and location makes the detection of polyps challenging. Moreover, colonoscopy surveillance and removal of polyps are highly operator-dependent procedures and occur in a highly complex organ topology.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is one of the most common causes of cancer and cancer-related mortality worldwide. Performing colon cancer screening in a timely fashion is the key to early detection. Colonoscopy is the primary modality used to diagnose colon cancer.

View Article and Find Full Text PDF

Accurate segmentation of organs-at-risks (OARs) is a precursor for optimizing radiation therapy planning. Existing deep learning-based multi-scale fusion architectures have demonstrated a tremendous capacity for 2D medical image segmentation. The key to their success is aggregating global context and maintaining high resolution representations.

View Article and Find Full Text PDF

Ubiquitous sensors and Internet of Things (IoT) technologies have revolutionized the sports industry, providing new methodologies for planning, effective coordination of training, and match analysis post game. New methods, including machine learning, image and video processing, have been developed for performance evaluation, allowing the analyst to track the performance of a player in real-time. Following FIFA's 2015 approval of electronics performance and tracking system during games, performance data of a single player or the entire team is allowed to be collected using GPS-based wearables.

View Article and Find Full Text PDF

Colonoscopy is a gold standard procedure but is highly operator-dependent. Automated polyp segmentation, a precancerous precursor, can minimize missed rates and timely treatment of colon cancer at an early stage. Even though there are deep learning methods developed for this task, variability in polyp size can impact model training, thereby limiting it to the size attribute of the majority of samples in the training dataset that may provide sub-optimal results to differently sized polyps.

View Article and Find Full Text PDF

The detection and removal of precancerous polyps through colonoscopy is the primary technique for the prevention of colorectal cancer worldwide. However, the miss rate of colorectal polyp varies significantly among the endoscopists. It is well known that a computer-aided diagnosis (CAD) system can assist endoscopists in detecting colon polyps and minimize the variation among endoscopists.

View Article and Find Full Text PDF

Video capsule endoscopy is a hot topic in computer vision and medicine. Deep learning can have a positive impact on the future of video capsule endoscopy technology. It can improve the anomaly detection rate, reduce physicians' time for screening, and aid in real-world clinical analysis.

View Article and Find Full Text PDF
Article Synopsis
  • Polyps in the colon are recognized as indicators of potential cancer, and while many are non-cancerous, their characteristics correlate with colon cancer risk.
  • Several automated methods for detecting and segmenting polyps exist, but they often lack rigorous testing on diverse datasets, which limits their reliability across different populations.
  • To address this gap, a new dataset called PolypGen has been created from six medical centers, featuring over 300 patients and 3,762 meticulously annotated polyp labels, enhancing the accuracy and applicability of polyp detection techniques.
View Article and Find Full Text PDF

Automated liver segmentation from radiology scans (CT, MRI) can improve surgery and therapy planning and follow-up assessment in addition to conventional use for diagnosis and prognosis. Although convolutional neural networks (CNNs) have became the standard image segmentation tasks, more recently this has started to change towards Transformers based architectures because Transformers are taking advantage of capturing long range dependence modeling capability in signals, so called attention mechanism. In this study, we propose a new segmentation approach using a hybrid approach combining the Transformer(s) with the Generative Adversarial Network (GAN) approach.

View Article and Find Full Text PDF

The increase of available large clinical and experimental datasets has contributed to a substantial amount of important contributions in the area of biomedical image analysis. Image segmentation, which is crucial for any quantitative analysis, has especially attracted attention. Recent hardware advancement has led to the success of deep learning approaches.

View Article and Find Full Text PDF

Widely used traditional supervised deep learning methods require a large number of training samples but often fail to generalize on unseen datasets. Therefore, a more general application of any trained model is quite limited for medical imaging for clinical practice. Using separately trained models for each unique lesion category or a unique patient population will require sufficiently large curated datasets, which is not practical to use in a real-world clinical set-up.

View Article and Find Full Text PDF

Methods based on convolutional neural networks have improved the performance of biomedical image segmentation. However, most of these methods cannot efficiently segment objects of variable sizes and train on small and biased datasets, which are common for biomedical use cases. While methods exist that incorporate multi-scale fusion approaches to address the challenges arising with variable sizes, they usually use complex models that are more suitable for general semantic segmentation problems.

View Article and Find Full Text PDF

Artificial intelligence (AI) is predicted to have profound effects on the future of video capsule endoscopy (VCE) technology. The potential lies in improving anomaly detection while reducing manual labour. Existing work demonstrates the promising benefits of AI-based computer-assisted diagnosis systems for VCE.

View Article and Find Full Text PDF