98%
921
2 minutes
20
Background: Femoral stem of titanium alloy has been widely used for hip arthroplasty with considerable efficacy; however, the application of this implant in patients with osteoporosis is limited due to excessive bone resorption. Macrophages participate in the regulation of inflammatory response and have been a topic of increasing research interest in implant field. However, few study has explored the link between macrophage polarization and osteogenic-osteoclastic differentiation. The present study aims to develop a novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold with enhanced osteoporotic osseointegration through immunotherapy.
Method: To improve the osteointegration under osteoporosis, we developed a hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold (PT). Biomimetic extracellular matrix (ECM) was constructed inside the interconnected pores of PT in micro-scale. And in nano-scale, a drug cargo icariin@Mg-MOF-74 (ICA@MOF) was wrapped in ECM-like structure that can control release of icariin and Mg.
Results: In this novel hierarchical biofunctionalized 3D-printed porous Ti6Al4V scaffold, the macroporous structure provides mechanical support, the microporous structure facilitates cell adhesion and enhances biocompatibility, and the nanostructure plays a biological effect. We also demonstrate the formation of abundant new bone at peripheral and internal sites after intramedullary implantation of the biofunctionalized PT into the distal femur in osteoporotic rats. We further find that the controlled-release of icariin and Mg from the biofunctionalized PT can significantly improve the polarization of M0 macrophages to M2-type by inhibiting notch1 signaling pathway and induce the secretion of anti-inflammatory cytokines; thus, it significantly ameliorates bone metabolism, which contributes to improving the osseointegration between the PT and osteoporotic bone.
Conclusion: The therapeutic potential of hierarchical PT implants containing controlled release system are effective in geriatric orthopaedic osseointegration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817481 | PMC |
http://dx.doi.org/10.1186/s12951-022-01277-0 | DOI Listing |
Sci Rep
August 2025
Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany.
Here we report a novel platform for the detection of nucleocapsid (N) and receptor-binding domain (RBD) of spike (S) proteins of SARS-CoV-2 viruses using the surface plasmon resonance (SPR) technique. We demonstrate that the functionalization of SPR sensors with molecular 2D materials - 1 nm thick carbon nanomembranes (CNMs) significantly enhances sensitivity. CNMs terminated with azide linker (N-CNM) enable covalent bonding of SARS-CoV-2 antibodies for specific immobilization of the N- and S-proteins to the sensor surface.
View Article and Find Full Text PDFNanomaterials (Basel)
June 2025
Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.
Cellulose nanocrystals (CNCs), derived from renewable biomass, have emerged as a pivotal component in the design of biomimetic composite hydrogels due to their exceptional mechanical strength, biocompatibility, and tunable surface chemistry. This review comprehensively explores recent advancements in surface modification strategies for CNCs (physical adsorption, chemical grafting, and bio-functionalization) and their impacts on the structure and properties of hydrogel networks, with particular emphasis on mechanical properties. Future applications in light/thermal/electrical-responsive soft actuators are critically analyzed.
View Article and Find Full Text PDFAdv Healthc Mater
April 2025
Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307, Dresden, Germany.
3D extrusion bioprinting, a promising and widely adopted technology in the emerging field of biofabrication, has gained considerable attention for its ability to fabricate hierarchically structured, native-mimicking tissue substitutes with precisely defined cell distributions. Despite notable advancements, the limited availability of suitably bioactive bioinks remains a major challenge, hindering the construction of volumetric tissue substitutes effectively mimicking biological functionality. Therefore, this work proposes a protein-rich, low-cost, bioactive bioink: abundantly available eggwhite powder (EWP) is leveraged to functionalize an alginate-methylcellulose (AlgMC) hydrogel matrix and enhance cellular response.
View Article and Find Full Text PDFTalanta
September 2024
Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China. Electronic a
Cardiac troponin I (cTnI) is a critical biomarker for the diagnosis of acute myocardial infarction (AMI). Herein, we report a novel integrated lateral flow immunoassay (LFIA) platform for highly sensitive point-of-care testing (POCT) of cTnI using hierarchical dendritic copper-nickel (HD-nanoCu-Ni) nanostructures. The electrodeposited HD-nanoCu-Ni film (∼22 μm thick) on an ITO-coated glass substrate exhibits superior capillary action and structural integrity.
View Article and Find Full Text PDFJ Biomed Mater Res A
November 2024
Centro de Investigaciones Biológicas-Margarita Salas (CIB Margarita Salas), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.
In this work, a sequential covalent immobilization of graphene oxide (GO) and hyaluronic acid (HA) is performed to obtain a biocompatible wear-resistant nanocoating on the surface of the biomedical grade cobalt-chrome (CoCr) alloy. Nanocoated CoCr surfaces were characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) in 3 g/L HA electrolyte. Tribocorrosion tests of the nanocoated CoCr surfaces were carried out in a pin on flat tribometer.
View Article and Find Full Text PDF