A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Biomimetic Cellulose Nanocrystals Composite Hydrogels: Recent Progress in Surface Modification and Smart Soft Actuator Applications. | LitMetric

Biomimetic Cellulose Nanocrystals Composite Hydrogels: Recent Progress in Surface Modification and Smart Soft Actuator Applications.

Nanomaterials (Basel)

Key Laboratory of Rubber-Plastics, Ministry of Education/Shandong Provincial Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China.

Published: June 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cellulose nanocrystals (CNCs), derived from renewable biomass, have emerged as a pivotal component in the design of biomimetic composite hydrogels due to their exceptional mechanical strength, biocompatibility, and tunable surface chemistry. This review comprehensively explores recent advancements in surface modification strategies for CNCs (physical adsorption, chemical grafting, and bio-functionalization) and their impacts on the structure and properties of hydrogel networks, with particular emphasis on mechanical properties. Future applications in light/thermal/electrical-responsive soft actuators are critically analyzed. Guided by biomimetic design principles, the anisotropic mechanical responses induced by CNC-oriented alignment are explored, along with their cutting-edge advancements in soft robotics, wearable sensing, and biomedical devices. Perspectives are provided on future directions, including multi-stimuli synergistic actuation systems and sensing-actuation integration architectures. This work establishes a fundamental framework for designing CNC-enhanced smart hydrogels with tailored functionalities and hierarchical structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12251025PMC
http://dx.doi.org/10.3390/nano15130996DOI Listing

Publication Analysis

Top Keywords

cellulose nanocrystals
8
composite hydrogels
8
surface modification
8
biomimetic cellulose
4
nanocrystals composite
4
hydrogels progress
4
progress surface
4
modification smart
4
smart soft
4
soft actuator
4

Similar Publications