98%
921
2 minutes
20
Viral spike proteins play important roles in the viral entry process, facilitating attachment to cellular receptors and fusion of the viral envelope with the cell membrane. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein binds to the cellular receptor angiotensin converting enzyme-2 (ACE2) via its receptor-binding domain (RBD). The cysteine residue at position 488, consisting of a disulfide bridge with cysteine 480 is located in an important structural loop at ACE2-binding surface of RBD, and is highly conserved among SARS-related coronaviruses. We showed that the substitution of Cys-488 with alanine impaired pseudotyped SARS-CoV-2 infection, syncytium formation, and cell-cell fusion triggered by SARS-CoV-2 spike expression. Consistently, in vitro binding of RBD and ACE2, spike-mediated cell-cell fusion, and pseudotyped viral infection of VeroE6/TMPRSS2 cells were inhibited by the thiol-reactive compounds N-acetylcysteine (NAC) and a reduced form of glutathione (GSH). Furthermore, we demonstrated that the activity of variant spikes from the SARS-CoV-2 alpha and delta strains were also suppressed by NAC and GSH. Taken together, these data indicate that Cys-488 in spike RBD is required for SARS-CoV-2 spike functions and infectivity, and could be a target of anti-SARS-CoV-2 therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800159 | PMC |
http://dx.doi.org/10.1016/j.bbrc.2022.01.106 | DOI Listing |
Virology
September 2025
Infection Biology Unit, German Primate Center, 37077 Göttingen, Germany.
New SARS-CoV-2 variants continue to emerge and may cause new waves of COVID-19. Antibody evasion is a major driver of variant emergence but variants can also exhibit altered capacity to enter lung cells and to use ACE2 species orthologues for cell entry. Here, we assessed cell line tropism, usage of ACE2 orthologues and antibody evasion of variant MC.
View Article and Find Full Text PDFVaccine
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:
The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China.
The COVID-19 pandemic remains a global health crisis, with successive SARS-CoV-2 variants exhibiting enhanced transmissibility and immune evasion. Notably, the Omicron variant harbors extensive mutations in the spike protein's receptor-binding domain (RBD), altering viral fitness. While temperature is a critical environmental factor modulating viral stability and transmission, its molecular-level effects on variant-specific RBD-human angiotensin-converting enzyme 2 (hACE2) interactions remain underexplored.
View Article and Find Full Text PDFInfluenza Other Respir Viruses
September 2025
Department of Medical Laboratory, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, China.
Objectives: This study compared the diagnostic accuracy of seven different commercial serological assays for COVID-19, using RT-PCR as the gold standard, through meta-analysis and indirect comparison.
Methods: Fifty-seven studies, published from November 2019 to June 2024, were included. The diagnostic performance of IgA, IgG, and total antibody assays for SARS-CoV-2 was assessed.
Adv Pharm Bull
July 2025
Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia.
Purpose: SARS-CoV-2 infection may lead to a worse prognosis in COVID-19 patients by inducing syncytia formation which implies intercellular transmission and immune evasion. Hesperidin (HSD) and hesperetin (HST) are two citrus flavonoids that demonstrate the potential to interfere with spike/human angiotensin-converting enzyme-2 (hACE2) binding and show an inhibitory effect in the SARS-CoV-2 pseudovirus internalization model. Here, we determined the effects of HSD and HST to inhibit syncytia formation using in vitro cell models.
View Article and Find Full Text PDF