98%
921
2 minutes
20
Surface-targeting biotherapeutic agents have been successful in treating HER2-amplified cancers through immunostimulation or chemodelivery but have failed to produce effective inhibitors of constitutive HER2-HER3 signaling. We report an extensive structure-function analysis of this tumor driver, revealing complete uncoupling of intracellular signaling and tumorigenic function from regulation or constraints from their extracellular domains (ECDs). The canonical HER3 ECD conformational changes and exposure of the dimerization interface are nonessential, and the entire ECDs of HER2 and HER3 are redundant for tumorigenic signaling. Restricting the proximation of partner ECDs with bulk and steric clash through extremely disruptive receptor engineering leaves tumorigenic signaling unperturbed. This is likely due to considerable conformational flexibilities across the span of these receptor molecules and substantial undulations in the plane of the plasma membrane, none of which had been foreseen as impediments to targeting strategies. The massive overexpression of HER2 functionally and physically uncouples intracellular signaling from extracellular constraints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865943 | PMC |
http://dx.doi.org/10.1016/j.celrep.2021.110285 | DOI Listing |
J Cell Commun Signal
September 2025
Department of Anatomy School of Basic Medical Sciences, Qiqihar Medical University Qiqihar China.
Ductal carcinoma in situ (DCIS) is a noninvasive precursor of breast cancer with a high potential for progression. Aberrant DNA methylation plays a pivotal role in early tumorigenesis, yet the regulatory mechanisms remain incompletely defined. Integrated bioinformatic analysis of methylation and transcriptomic datasets identified miR-217 as a candidate regulator of DNA methyltransferase 1 (DNMT1).
View Article and Find Full Text PDFActa Biochim Biophys Sin (Shanghai)
September 2025
The First School of Clinical Medicine, Lanzhou University, Lanzhou 730030, China.
Lung squamous cell carcinoma (LUSC) is a common subtype of non-small cell lung cancer, with limited treatment options and poor patient prognosis. Currently, common driver mutations in lung adenocarcinoma rarely occur in LUSC; the mutated genes found in LUSCs lack corresponding targeted drugs. Therefore, it is necessary to discover new therapeutic targets for LUSC and provide patients with more treatment options.
View Article and Find Full Text PDFBiology (Basel)
July 2025
Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM 88003, USA.
Proto-oncogenes in the superfamily play dual roles in maintaining cellular homeostasis, such as regulating growth signals and contributing to cancer development through proliferation and deregulation. Activating proto-oncogenes in vitro transforms cells, underscoring their centrality in gene regulation and cellular networks. Despite decades of research, poor outcomes in advanced cancers reveal gaps in understanding Ras-driven mechanisms or therapeutic strategies.
View Article and Find Full Text PDFMedComm (2020)
September 2025
Department of Biochemistry and Molecular Biology, School of Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue Nanjing University of Chinese Medicine Nanjing China.
Tumor-associated macrophages (TAMs) are prominent constituents of solid tumors, and their prevalence is often associated with poor clinical outcomes. These highly adaptable immune cells undergo dynamic functional changes within the immunosuppressive tumor microenvironment (TME), engaging in reciprocal interactions with malignant cells. This bidirectional communication facilitates concurrent phenotypic transformation: tumor cells shift toward invasive mesenchymal states, whereas TAMs develop immunosuppressive, pro-tumorigenic traits.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Whitehead Institute for Biomedical Research, Cambridge, MA 02142.
The awakening of dormant disseminated cancer cells appears to be responsible for the clinical relapses of patients whose primary tumors have been successfully cured months and even years earlier. In the present study, we demonstrate that dormant breast cancer cells lodged in the lungs reside in a highly mesenchymal, nonproliferative phenotypic state. The awakening of these cells is not triggered by a cancer cell-autonomous process.
View Article and Find Full Text PDF