A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Optimal sensor placement method for wastewater treatment plants based on discrete multi-objective state transition algorithm. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Parameters monitoring is essential to maintain the stability and efficiency of the wastewater treatment process, which has spurred ubiquitous installation of sensors in wastewater treatment plants (WWTPs). As the rich process data of WWTPs is not effectively transformed into actionable knowledge for system optimization due to improper sensor installation, the sensor placement scheme needs to be optimized. In this paper, a weighted sensor placement optimization model based on sensor cost, information richness and reliability is established to transform the sensor optimization problem to a nonlinear mathematical programming problem. Then a discrete multi-objective state transition algorithm is proposed to find the Pareto optimal solutions. Finally, an evaluation strategy is designed to select the most suitable solution for industrial application. The results of simulation experiments on three different WWTPs demonstrate the validity and superiority of the proposed method, increasing the degree of variable observability and measurement redundancy while keeping the sensor cost at a low level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2022.114491DOI Listing

Publication Analysis

Top Keywords

sensor placement
12
wastewater treatment
12
treatment plants
8
discrete multi-objective
8
multi-objective state
8
state transition
8
transition algorithm
8
sensor cost
8
sensor
6
optimal sensor
4

Similar Publications