Prior information-based high-resolution tomography image reconstruction from a single digitally reconstructed radiograph.

Phys Med Biol

Department of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China.

Published: April 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Tomography images are essential for clinical diagnosis and trauma surgery, allowing doctors to understand the internal information of patients in more detail. Since the large amount of x-ray radiation from the continuous imaging during the process of computed tomography scanning can cause serious harm to the human body, reconstructing tomographic images from sparse views becomes a potential solution to this problem. Here we present a deep-learning framework for tomography image reconstruction, namely TIReconNet, which defines image reconstruction as a data-driven supervised learning task that allows a mapping between the 2D projection view and the 3D volume to emerge from corpus. The proposed framework consists of four parts: feature extraction module, shape mapping module, volume generation module and super resolution module. The proposed framework combines 2D and 3D operations, which can generate high-resolution tomographic images with a relatively small amount of computing resources and maintain spatial information. The proposed method is verified on chest digitally reconstructed radiographs, and the reconstructed tomography images have achieved PSNR value of 18.621 ± 1.228 dB and SSIM value of 0.872 ± 0.041 when compared against the ground truth. In conclusion, an innovative convolutional neural network architecture is proposed and validated in this study, which proves that there is the potential to generate a 3D high-resolution tomographic image from a single 2D image using deep learning. This method may actively promote the application of reconstruction technology for radiation reduction, and further exploration of intraoperative guidance in trauma and orthopedics.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac508dDOI Listing

Publication Analysis

Top Keywords

image reconstruction
12
tomography image
8
digitally reconstructed
8
tomography images
8
tomographic images
8
proposed framework
8
generate high-resolution
8
high-resolution tomographic
8
tomography
5
image
5

Similar Publications

Significance: Melanoma's rising incidence demands automatable high-throughput approaches for early detection such as total body scanners, integrated with computer-aided diagnosis. High-quality input data is necessary to improve diagnostic accuracy and reliability.

Aim: This work aims to develop a high-resolution optical skin imaging module and the software for acquiring and processing raw image data into high-resolution dermoscopic images using a focus stacking approach.

View Article and Find Full Text PDF

Significance: The spatial and temporal distribution of fluorophore fractions in biological and environmental systems contains valuable information about the interactions and dynamics of these systems. To access this information, fluorophore fractions are commonly determined by means of their fluorescence emission spectrum (ES) or lifetime (LT). Combining both dimensions in temporal-spectral multiplexed data enables more accurate fraction determination while requiring advanced and fast analysis methods to handle the increased data complexity and size.

View Article and Find Full Text PDF

Background: In contrast-enhanced digital mammography (CEDM) and contrast-enhanced digital breast tomosynthesis (CEDBT), low-energy (LE) and high-energy (HE) images are acquired after injection of iodine contrast agent. Weighted subtraction is then applied to generate dual-energy (DE) images, where normal breast tissues are suppressed, leaving iodinated objects enhanced. Currently, clinical systems employ a dual-shot (DS) method, where LE and HE images are acquired with two separate exposures.

View Article and Find Full Text PDF

Lightweight hybrid Mamba2 for unsupervised medical image registration.

Med Phys

September 2025

School of Computer, Electronics and Information, Guangxi University, Nanning, China.

Background: Deformable medical image registration is a critical task in medical imaging-assisted diagnosis and treatment. In recent years, medical image registration methods based on deep learning have made significant success by leveraging prior knowledge, and the registration accuracy and computational efficiency have been greatly improved. Models based on Transformers have achieved better performance than convolutional neural network methods (ConvNet) in image registration.

View Article and Find Full Text PDF

Background: Four-dimensional magnetic resonance imaging (4D-MRI) holds great promise for precise abdominal radiotherapy guidance. However, current 4D-MRI methods are limited by an inherent trade-off between spatial and temporal resolutions, resulting in compromised image quality characterized by low spatial resolution and significant motion artifacts, hindering clinical implementation. Despite recent advancements, existing methods inadequately exploit redundant frame information and struggle to restore structural details from highly undersampled acquisitions.

View Article and Find Full Text PDF