98%
921
2 minutes
20
Treatment of bleeding disorders using transfusion of donor-derived platelets faces logistical challenges due to their limited availability, high risk of contamination, and short (5 to 7 days) shelf life. These challenges could be potentially addressed by designing platelet mimetics that emulate the adhesion, aggregation, and procoagulant functions of platelets. To this end, we created liposome-based platelet-mimicking procoagulant nanoparticles (PPNs) that can expose the phospholipid phosphatidylserine on their surface in response to plasmin. First, we tested PPNs in vitro using human plasma and demonstrated plasmin-triggered exposure of phosphatidylserine and the resultant assembly of coagulation factors on the PPN surface. We also showed that this phosphatidylserine exposed on the PPN surface could restore and enhance thrombin generation and fibrin formation in human plasma depleted of platelets. In human plasma and whole blood in vitro, PPNs improved fibrin stability and clot robustness in a fibrinolytic environment. We then tested PPNs in vivo in a mouse model of thrombocytopenia where treatment with PPNs reduced blood loss in a manner comparable to treatment with syngeneic platelets. Furthermore, in rat and mouse models of traumatic hemorrhage, treatment with PPNs substantially reduced bleeding and improved survival. No sign of systemic or off-target thrombotic risks was observed in the animal studies. These findings demonstrate the potential of PPNs as a platelet surrogate that should be further investigated for the management of bleeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9179936 | PMC |
http://dx.doi.org/10.1126/scitranslmed.abb8975 | DOI Listing |
Biotechniques
September 2025
Woman, Mother + Baby Research Institute, Tufts Medicine, Boston, MA, USA.
MicroRNAs (miRNAs) are considered more stable than mRNA, but the impact of progressive thawing of biological samples after freezing as may happen during shipping delays has not been quantified. To address this, we utilized digital PCR to estimate the absolute concentrations of select miRNAs following progressive thawing of human plasma and maintenance at ambient temperature. Specifically, we quantified let-7b-3p, miR-144-5p, miR-150-5p, miR-517a-3p, miR-524-5p, and miR-1283, which have varying abundance in plasma.
View Article and Find Full Text PDFJ Vet Intern Med
September 2025
Department of Small Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
Background: Serum copeptin (sCoP) is used as a surrogate for plasma arginine vasopressin (pAVP) measurement in humans.
Objective: To measure pAVP and sCoP at rest and after osmotic- and non-osmotic stimulation testing in dogs.
Animals: Eight young castrated/spayed healthy research Beagles, eight young intact dogs, and eight old neutered healthy client-owned dogs.
J Neurochem
September 2025
Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
Elucidating the earliest biological mechanisms underlying Alzheimer's disease (AD) is critical for advancing early detection strategies. While amyloid-β (Aβ) and tau pathologies have been central to preclinical AD research, the roles of peripheral biological processes in disease initiation remain underexplored. We investigated patterns of F-MK6240 tau positron emission tomography (PET) and peripheral inflammation across stages defined by Aβ burden and neuronal injury in n = 132 (64.
View Article and Find Full Text PDFInt J Toxicol
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria.
Polyethylene glycols (PEGs) are amphiphilic polymers that are used extensively in consumer products and PEGylated biotherapeutics. Although PEGs are considered biologically inert with a low toxicity, anti-PEG antibodies have been detected in patients receiving treatment with PEGylated biotherapeutics as well as in healthy individuals. Despite continual exposure in daily life, the prevalence of PEGs within the general population remains unclear.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Computational Science & Artificial Intelligence, Xenon Pharmaceuticals Inc, Burnaby, BC, Canada.
Aims: To develop a machine learning (ML) model for early-stage prediction of human half-life of oral central nervous system (CNS) drugs and to establish a curated dataset, including key and data, to support future modeling efforts.
Materials & Methods: Human and rat half-life, plasma protein binding (PPB), and liver microsomal clearance (LM) data for 76 diverse CNS drugs and candidates were obtained from public sources or evaluated at WuXi AppTec. Gradient tree boosting (GTB) models were constructed using ChemAxon's Trainer Engine.