98%
921
2 minutes
20
Drug discovery from natural sources is going through a renaissance, having spent many decades in the shadow of synthetic molecule drug discovery, despite the fact that natural product-derived compounds occupy a much greater chemical space than those created through synthetic chemistry methods. With this new era comes new possibilities, not least the novel targets that have emerged in recent times and the development of state-of-the-art technologies that can be applied to drug discovery from natural sources. Although progress has been made with some immunomodulating drugs, there remains a pressing need for new agents that can be used to treat the wide variety of conditions that arise from disruption, or over-activation, of the immune system; natural products may therefore be key in filling this gap. Recognising that, at present, there is no authoritative article that details the current state-of-the-art of the immunomodulatory activity of natural products, this in-depth review has arisen from a joint effort between the International Union of Basic and Clinical Pharmacology (IUPHAR) Natural Products and Immunopharmacology Sections, with contributions from a number of world-leading researchers in the field of natural product drug discovery, to provide a "position statement" on what natural products has to offer in the search for new immunomodulatory argents. To this end, we provide a historical look at previous discoveries of naturally occurring immunomodulators, present a picture of the current status of the field and provide insight into the future opportunities and challenges for the discovery of new drugs to treat immune-related diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.phrs.2022.106076 | DOI Listing |
SAR QSAR Environ Res
September 2025
Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
Evaluating the permeability of different molecular structures across the Caco-2 cell line is crucial for drug discovery and development. The present study primarily focuses on developing machine learning-based multiclass classification models for predicting the permeability of molecules across the Caco-2 cell line. However, the class imbalance in permeability datasets poses a significant challenge for developing predictive models in the case of multiclass analysis.
View Article and Find Full Text PDFChem Biol Drug Des
September 2025
Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil.
Leishmaniasis, a disease caused by Leishmania parasites, poses a significant health threat globally, particularly in Latin America and Brazil. Leishmania amazonensis is an important species because it is associated with both cutaneous leishmaniasis and an atypical visceral form. Current treatments are hindered by toxicity, resistance, and high cost, driving the need for new therapeutic targets and drugs.
View Article and Find Full Text PDFFuture Med Chem
September 2025
Computational Science & Artificial Intelligence, Xenon Pharmaceuticals Inc, Burnaby, BC, Canada.
Aims: To develop a machine learning (ML) model for early-stage prediction of human half-life of oral central nervous system (CNS) drugs and to establish a curated dataset, including key and data, to support future modeling efforts.
Materials & Methods: Human and rat half-life, plasma protein binding (PPB), and liver microsomal clearance (LM) data for 76 diverse CNS drugs and candidates were obtained from public sources or evaluated at WuXi AppTec. Gradient tree boosting (GTB) models were constructed using ChemAxon's Trainer Engine.
Future Med Chem
September 2025
School of Pharmacy, Graphic Era Hill University, Dehradun, India.
Thiophene derivatives have gained considerable interest lately due to their potential as anti-inflammatory agents. Their structural flexibility and capacity to interact with key enzymes involved in inflammatory processes position them as promising candidates for drug development. This review provides a comprehensive overview of the latest research, focusing on the synthesis and therapeutic evaluation of thiophene-based compounds that act as inhibitors of cyclooxygenase (COX) and lipoxygenase (LOX) enzymes.
View Article and Find Full Text PDFJ Org Chem
September 2025
Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Shenzhen Grubbs Institute, Guangming Advanced Research Institute, Department of Chemistry, and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. Ch
Catalytic C-N coupling reactions are among the most important bond-forming events in synthetic chemistry. Ammonium salts are economic and easily available inorganic compounds, serving as ideal nitrogen sources for nitrogen-containing organic compounds. The use of ammonium salts highlights the synthesis of -containing organic compounds from inorganic compounds.
View Article and Find Full Text PDF