98%
921
2 minutes
20
The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood. In the present study, ASFV MGF360-11L inhibited cGAS, STING, TBK1, IKKε, IRF7 and IRF3-5D mediated activation of the IFN-β and ISRE promoters, accompanied by decreases in IFN-β, ISG15 and ISG56 mRNA expression. ASFV MGF360-11L interacted with TBK1 and IRF7, degrading TBK1 and IRF7 through the cysteine, ubiquitin-proteasome and autophagy pathways. Moreover, ASFV MGF360-11L also inhibited the phosphorylation of TBK1 and IRF3 stimulated by cGAS-STING overexpression. Truncation mutation analysis revealed that aa 167-353 of ASFV MGF360-11L could inhibit cGAS-STING-mediated activation of the IFN-β and ISRE promoters. Finally, the results indicated that ASFV MGF360-11L plays a significant role in inhibiting IL-1β, IL-6 and IFN-β production in PAM cells (PAMs) infected with ASFV. In short, these results demonstrated that ASFV MGF360-11L was involved in regulating IFN-I expression by negatively regulating the cGAS signaling pathway. In summary, this study preliminarily clarified the molecular mechanism by which the ASFV MGF360-11L protein antagonizes IFN-I-mediated antiviral activity, which will help to provide new strategies for the treatment and prevention of ASF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8785597 | PMC |
http://dx.doi.org/10.1186/s13567-022-01025-0 | DOI Listing |
Pathogens
November 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
African swine fever (ASF), a highly infectious and devastating disease affecting both domestic pigs and wild boars, is caused by the African swine fever virus (ASFV). ASF has resulted in rapid global spread of the disease, leading to significant economic losses within the swine industry. A significant obstacle to the creation of safe and effective ASF vaccines is the existing knowledge gap regarding the pathogenesis of ASFV and its mechanisms of immune evasion.
View Article and Find Full Text PDFVet Res
January 2022
College of Veterinary Medicine, Jilin Agricultural University, Changchun, China.
The type I interferon (IFN-I) signaling pathway is an important part of the innate immune response and plays a vital role in controlling and eliminating pathogens. African swine fever virus (ASFV) encodes various proteins to evade the host's natural immunity. However, the molecular mechanism by which the ASFV-encoded proteins inhibit interferon production remains poorly understood.
View Article and Find Full Text PDF