Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aluminum poisoning has been reported in some parts of the world. It is one of the global health problems that affect many organs. Aluminum is widely used daily by humans and industries. Residues of aluminum compounds can be found in drinking water, food, air, medicine, deodorants, cosmetics, packaging, many appliances and equipment, buildings, transportation industries, and aerospace engineering. Exposure to high levels of aluminum compounds leads to aluminum poisoning. Aluminum poisoning has complex and multidimensional effects, such as disruption or inhibition of enzymes activities, changing protein synthesis, nucleic acid function, and cell membrane permeability, preventing DNA repair, altering the stability of DNA organization, inhibition of the protein phosphatase 2A (PP2A) activity, increasing reactive oxygen species (ROS) production, inducing oxidative stress, decreasing activity of antioxidant enzymes, altering cellular iron homeostasis, and changing NF-kB, p53, and JNK pathway leading to apoptosis. Aluminum poisoning can affect blood content, musculoskeletal system, kidney, liver, and respiratory and nervous system, and the extent of poisoning can be diagnosed by assaying aluminum compounds in blood, urine, hair, nails, and sweat. Chelator agents such as deferoxamine (DFO) are used in the case of aluminum poisoning. Besides, combination therapies are recommended.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8767391PMC
http://dx.doi.org/10.1155/2022/1480553DOI Listing

Publication Analysis

Top Keywords

aluminum poisoning
24
aluminum compounds
12
aluminum
10
poisoning
6
poisoning emphasis
4
emphasis mechanism
4
mechanism treatment
4
treatment intoxication
4
intoxication aluminum
4
poisoning reported
4

Similar Publications

Engineering of Core-Shell Pd/SSZ-13@AlO Zeolite: Unlocking Superior NO Adsorption and Chemical Durability.

Environ Sci Technol

September 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

Pd-zeolites are promising passive NO adsorber (PNA) materials for mitigating cold-start emissions from lean-burn engines. However, their practical deployment is constrained by insufficient densities and dispersion of isolated Pd active sites as well as their susceptibility to hydrothermal degradation and phosphorus poisoning encountered in vehicle exhaust environments. Herein, we develop a rationally engineered core-shell Pd/SSZ-13@AlO composite, featuring a Pd/SSZ-13 core encapsulated within a mesoporous AlO shell.

View Article and Find Full Text PDF

spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.

View Article and Find Full Text PDF

Introduction: Mitochondrial toxicity caused by phosphine released from aluminium phosphide in the presence of moisture leads to haemodynamic collapse, and the mortality from aluminium phosphide ingestion is high. In anecdotal studies, veno-arterial extracorporeal membrane oxygenation appears to reduce mortality.

Methods: A retrospective, single-centre study was conducted of patients with aluminium phosphide poisoning managed between 2019 and 2023.

View Article and Find Full Text PDF

Utilization of steelwork off-gases through methanol synthesis: Sulfur-induced dynamic migration of ZnO over industrial Cu/ZnO/AlO catalyst and the poisoning mechanism.

J Environ Sci (China)

December 2025

Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China U

The reduction of carbon emissions in the steel industry is a significant challenge, and utilizing CO from carbon intensive steel industry off-gases for methanol production is a promising strategy for decarbonization. However, steelwork off-gases typically contain various impurities, including HS, which can deactivate commercial methanol synthesis catalysts, Cu/ZnO/AlO (CZA). Reverse water-gas shift (RWGS) reaction is the predominant side reaction in CO hydrogenation to methanol which can occur at ambient pressure, enabling the decouple of RWGS from methanol production at high pressure.

View Article and Find Full Text PDF