Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis.

Brain Behav

Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China.

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: GDF15 may be a potential biomarker for neurodegenerative diseases. In this analysis, we aimed to quantitative analysis the levels of GDF15 in patients with neurological diseases and in health control, and then to determine its potential diagnostic utility.

Methods: Two researchers separately conducted a systematic search of the relevant studies up to January 2021 in Embase, PubMed, and Web of Science. Effect sizes were estimated to use the standardized mean difference (SMD) with 95% confidence interval (CI). Sensitivity and specificity were calculated by the summary receiver operating characteristics curve (SROC) method. The sensitivity analysis was performed by the "one-in/one-out" approach. Considering the considerable heterogeneity among studies, random-effects model was used for the meta-analysis investigation.

Results: A total of eight articles were included in this meta-analysis and systematic review. The pooled results of the random effect model indicated GDF15 levels were significantly higher in patients with neurodegenerative disease than healthy people (SMD = 0.92, 95% CI: 0.44-1.40, Z = 3.75, p < 0.001). Sensitivity and specificity of biomarker of GDF15 were 0.90 (95% CI: 0.75-0.97), 0.77 (95% CI: 0.67-0.65), and AUC = 0.87 (95% CI: 0.84-0.90), respectively.

Conclusions: GDF15 levels were higher in patients with neurodegenerative disease than healthy people. And serum levels of GDF15 were a better marker for diagnostic utility of neurodegenerative disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8865151PMC
http://dx.doi.org/10.1002/brb3.2502DOI Listing

Publication Analysis

Top Keywords

neurodegenerative diseases
8
systematic review
8
diagnostic utility
4
gdf15
4
utility gdf15
4
gdf15 neurodegenerative
4
diseases systematic
4
review meta-analysis
4
meta-analysis introduction
4
introduction gdf15
4

Similar Publications

Parkinson's disease (PD) is characterized by impairments in motor control following the degeneration of dopamine-producing neurons located in the substantia nigra pars compacta. Environmental pesticides such as Paraquat (PQ) and Maneb (MB) contribute to the onset of PD by inducing oxidative stress (OS). This study evaluated the therapeutic efficacy of moderate physical activity (PA) on both motor and non-motor symptoms in a Wistar rat model of Paraquat and Maneb (PQ/MB) induced PD.

View Article and Find Full Text PDF

Lysosome-dependent cell death (LDCD) is a regulated form of cell death initiated by increased lysosomal membrane permeability, leading to the cytoplasmic release of lysosomal enzymes and subsequent cellular damage. Molecular mechanisms controlling LDCD include lysosomal membrane instability and lysosomal enzyme release, which together lead to cell damage. A more profound comprehension of these underlying mechanisms may reveal new therapeutic targets for diseases associated with lysosomal dysfunction.

View Article and Find Full Text PDF

Targeting NLRP3 inflammasome with curcumin: mechanisms and therapeutic promise in chronic inflammation.

Inflammopharmacology

September 2025

Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India.

The NOD‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a key molecular complex that amplifies inflammatory cascades by maturing interleukin‑1 beta (IL-1β) and interleukin‑18 (IL-18) and inducing pyroptosis. It serves as a major driver and co-driver of numerous diseases associated with chronic inflammation. Dysregulated NLRP3 activation contributes to the progression of disorders such as rheumatoid arthritis, inflammatory bowel disease, neurodegenerative diseases and atherosclerosis.

View Article and Find Full Text PDF

Background: The dysregulation of long-chain noncoding RNAs (lncRNAs) causes several complex human diseases including neurodegenerative disorders across the globe.

Methods And Results: This study aimed to investigate lncRNA expression profiles of Withania somnifera (WS)-treated human neuroblastoma SK-N-SH cells at different timepoints (3 & 9 h) and concentrations (50 & 100 µg/mL) using RNA sequencing. Differential gene expression analysis showed a total of 4772 differentially expressed lncRNAs, out of which 3971 were upregulated and 801 were downregulated compared to controls.

View Article and Find Full Text PDF