98%
921
2 minutes
20
Purpose: Anti-vascular endothelial growth factor (Anti-VEGF) therapy is currently seen as the standard for treatment of neovascular AMD (nAMD). However, while treatments are highly effective, decisions for initial treatment and retreatment are often challenging for non-retina specialists. The purpose of this study is to develop convolutional neural networks (CNN) that can differentiate treatment indicated presentations of nAMD for referral to treatment centre based solely on SD-OCT. This provides the basis for developing an applicable medical decision support system subsequently.
Methods: SD-OCT volumes of a consecutive real-life cohort of 1503 nAMD patients were analysed and two experiments were carried out. To differentiate between no treatment class vs. initial treatment nAMD class and stabilised nAMD vs. active nAMD, two novel CNNs, based on SD-OCT volume scans, were developed and tested for robustness and performance. In a step towards explainable artificial intelligence (AI), saliency maps of the SD-OCT volume scans of 24 initial indication decisions with a predicted probability of > 97.5% were analysed (score 0-2 in respect to staining intensity). An AI benchmark against retina specialists was performed.
Results: At the first experiment, the area under curve (AUC) of the receiver-operating characteristic (ROC) for the differentiation of patients for the initial analysis was 0.927 (standard deviation (SD): 0.018), for the second experiment (retreatment analysis) 0.865 (SD: 0.027). The results were robust to downsampling (¼ of the original resolution) and cross-validation (tenfold). In addition, there was a high correlation between the AI analysis and expert opinion in a sample of 102 cases for differentiation of patients needing treatment (κ = 0.824). On saliency maps, the relevant structures for individual initial indication decisions were the retina/vitreous interface, subretinal space, intraretinal cysts, subretinal pigment epithelium space, and the choroid.
Conclusion: The developed AI algorithms can define and differentiate presentations of AMD, which should be referred for treatment or retreatment with anti-VEGF therapy. This may support non-retina specialists to interpret SD-OCT on expert opinion level. The individual decision of the algorithm can be supervised by saliency maps.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00417-022-05565-1 | DOI Listing |
JMIR Med Inform
September 2025
Department of Radiology, Air Force Medical Center, Air Force Medical University, Fucheng Road 30, Haidian District, Beijing, CN.
Background: Lateral malleolar avulsion fracture (LMAF) and subfibular ossicle (SFO) are distinct entities that both present as small bone fragments near the lateral malleolus on imaging, yet require different treatment strategies. Clinical and radiological differentiation is challenging, which can impede timely and precise management. On imaging, magnetic resonance imaging (MRI) is the diagnostic gold standard for differentiating LMAF from SFO, whereas radiological differentiation on computed tomography (CT) alone is challenging in routine practice.
View Article and Find Full Text PDFJ Pain Res
September 2025
Radiology Department, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, People's Republic of China.
Purpose: Previous studies have revealed alterations of the functional connectivity of the brain networks in ankylosing spondylitis (AS). Fractional amplitude of low-frequency fluctuations (fALFF) and regional homogeneity (ReHo) are both voxel-based functional metrics capable of estimating local spontaneous neural activities. This study aimed to investigate the local spontaneous neural activities in AS patients by utilizing the analytical approaches of fALFF and ReHo.
View Article and Find Full Text PDFPLoS One
September 2025
Korea University College of Medicine, Seoul, Republic of Korea.
Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.
Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.
Sci Rep
September 2025
School of Computing, Mathematics and Engineering, Charles Sturt University, Bathurst, NSW, 2795, Australia.
The increasing frequency of ransomware attacks necessitates the development of more effective detection methods. Existing image-based ransomware detection approaches have largely focused on static analysis, overlooking specialized ransomware behaviors such as encryption, privilege escalation, and system recovery disruption. Although dynamic and memory forensics-based visualization methods exist in the broader malware domain, they primarily target generic malware families and often rely on memory dumps or system snapshots without transforming behavioral features into spatially meaningful representations.
View Article and Find Full Text PDFmedRxiv
August 2025
Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
Purpose: To compare the performance of a foundation model and a supervised learning-based model for detecting referable glaucoma from fundus photographs.
Design: Evaluation of diagnostic technology.
Participants: 6,116 participants from the Los Angeles County Department of Health Services Teleretinal Screening Program.