Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The main focus of the current study was to sustain the releasing behavior of theophylline by fabricated polymeric microgels. The free radical polymerization technique was used for the development of aspartic acid-co-poly(2-acrylamido-2-methylpropanesulfonic acid) microgels while using various combinations of aspartic acid, 2-acrylamido-2-methylpropanesulfonic acid, and N',N'-methylene bisacrylamide as a polymer, monomer, and cross-linker, respectively. Ammonium peroxodisulfate and sodium hydrogen sulfite were used as initiators. Characterizations such as DSC, TGA, SEM, FTIR, and PXRD were performed for the fabricated microgels to assess their thermal stability with unreacted polymer and monomer, their surface morphology, the formation of a new polymeric system of microgels by evaluating the cross-linking of functional groups of the microgels' contents, and to analyze the reduction in crystallinity of the theophylline by fabricated microgels. Various studies such as dynamic swelling, drug loading, sol-gel analysis, in vitro drug release studies, and kinetic modeling were carried out for the developed microgels. Both dynamic swelling and percent drug release were found higher at pH 7.4 as compared to pH 1.2 due to the deprotonation of functional groups of aspartic acid and AMPS. Similarly, sol-gel analysis was performed and an increase in gel fraction was observed with the increasing concentration of microgel contents, while sol fraction was decreased. Conclusively, the prepared carrier system has the potential to sustain the release of the theophylline for an extended period of time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8775008PMC
http://dx.doi.org/10.3390/gels8010012DOI Listing

Publication Analysis

Top Keywords

aspartic acid
12
theophylline fabricated
8
polymer monomer
8
fabricated microgels
8
functional groups
8
dynamic swelling
8
sol-gel analysis
8
drug release
8
microgels
7
acid
5

Similar Publications

The increasing use of blood-contacting medical devices has brought about significant advancements in patient care, yet it also presents challenges such as thrombus formation and infection risks. Surface coatings play a vital role in mitigating these side effects, enhancing the safety and effectiveness of such devices. In this study, we introduced a novel coating employing poly(aspartic acid) (PASP), which can be easily applied through various modification pathways.

View Article and Find Full Text PDF

Background: Secondary fermentation can reduce variability in cocoa bean quality caused by the spontaneous, uncontrolled nature of primary fermentation. However, its optimization remains unexplored. This study evaluated the improvement of secondary fermentation through the combined use of Citrus limon peel and inoculation with Candida tropicalis H1Y4-1 as a starter.

View Article and Find Full Text PDF

Crab shell polypeptides enhance calcium dynamics and osteogenic activity in osteoporosis.

Front Pharmacol

August 2025

Department of Genetics and Cell Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China.

Background: Osteoporosis (OP) is a chronic, systemic skeletal disorder characterized by progressive bone loss and microarchitectural deterioration, which increases fracture susceptibility and presents a challenging set of global healthcare problems. Current pharmacological interventions are limited by adverse effects, high costs, and insufficient long-term efficacy. Here, we identify snow crab shell-derived polypeptides (SCSP) as a potent osteoprotective agent.

View Article and Find Full Text PDF

Sorption-enhanced dual-ligand MOF-based mixed-matrix membranes for CO separation.

Chem Commun (Camb)

September 2025

State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.

For the first time, a dual-ligand MOF, Al-Fum/Asp, was synthesized by partially replacing fumarate ligands in the Al-Fum framework with l-aspartic acid and incorporated into PIM-1 to fabricate mixed-matrix membranes. Amino groups anchored on Al-Fum/Asp enhance CO-adsorption, enabling the membrane to achieve CO/N separation performance beyond the 2019 Robeson upper bound.

View Article and Find Full Text PDF

Neuroinflammatory Consequences of Rhinovirus Infection in Human Epithelial and Neuronal Models.

Lung

September 2025

The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, Belfast BT9 7BL, UK.

Introduction: Rhinovirus (RV) is the leading cause of exacerbations of lung disease. A sensory neuronal model, derived from human dental pulp stem cells and differentiated into peripheral neuronal equivalents (PNEs), was used to examine RV's effects on airway sensory nerves. We investigated whether RV can directly infect and alter PNEs or whether it exerts effects indirectly via the release of mediators from infected epithelial cells.

View Article and Find Full Text PDF