98%
921
2 minutes
20
Understanding the behaviour of short-chain hydrocarbons confined to porous solids informs the targeted extraction of natural resources from geological features, and underpins rational developments in separation, storage and catalytic conversion processes. Herein, we report the application of low-field (12.7 MHz) H nuclear magnetic resonance (NMR) relaxation measurements to characterise ethane dynamics within mesoporous silica materials exhibiting mean pore diameters between 6 and 50 nm. Our measurements provide NMR-based adsorption isotherms within the range 25-50 bar and at ambient temperature, incorporating the ethane condensation point (40.7 bar at our experimental temperature of 23.6 °C). The quantitative nature of the acquired data is validated via a direct comparison of NMR-derived excess adsorption capacities with ex situ gravimetric ethane adsorption measurements, which are demonstrated to agree to within 0.2 mmol g of the observed ethane capacity. NMR relaxation time distributions are further demonstrated as a means to decouple interparticle and mesopore dominated adsorption phenomena, with unexpectedly rapid relaxation rates associated with interparticle ethane gas confirmed via a direct comparison with NMR self-diffusion analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cphc.202100794 | DOI Listing |
CNS Neurosci Ther
September 2025
Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Objectives: Unruptured brain arteriovenous malformations (AVMs) typically do not cause aphasia, even when the traditional language areas are affected by the nidus. We attempted to elucidate its language reorganization mechanism by analyzing the alterations in functional connectivity using functional connectivity (FC) and track-weighted static functional connectivity (TW-sFC) approaches.
Methods: This cross-sectional study prospectively enrolled patients with AVMs involving left-hemisphere language areas and healthy controls.
Prog Nucl Magn Reson Spectrosc
September 2025
Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy. Electronic address:
Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV-2, which includes both structured and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency.
View Article and Find Full Text PDFProg Nucl Magn Reson Spectrosc
February 2025
Brown Boveri Platz 4, 5400 Baden, Switzerland.
Zero and ultralow-field nuclear magnetic resonance (ZULF NMR) is an NMR modality where experiments are performed in fields at which spin-spin interactions within molecules and materials are stronger than Zeeman interactions. This typically occurs at external fields of microtesla strength or below, considerably smaller than Earth's field. In ZULF NMR, the measurement of spin-spin couplings and spin relaxation rates provides a nondestructive means for identifying chemicals and chemical fragments, and for conducting sample or process analyses.
View Article and Find Full Text PDFCogn Affect Behav Neurosci
September 2025
Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
Finding a way to relax is increasingly difficult in our overstimulating, modern society. Chronic stress can have severe psychological and physiological consequences. Music is a promising tool to promote relaxation by lowering heart rate, modulating mood and thoughts, and providing a sense of safety.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2025
Physical Biochemistry, University of Potsdam, 14476 Potsdam, Germany.
Intrinsically disordered proteins (IDPs) pose a challenge for structural characterization, as experimental methods lack the subnanometer/subnanosecond resolution to capture their dynamic conformational ensembles. Molecular dynamics (MD) simulations can, in principle, provide this information, but for the simulation of IDPs, dedicated protein and water force fields are needed, as traditional MD models for folded proteins prove inadequate for IDPs. Substantial effort was invested to develop IDP-specific force fields, but their performance in describing IDPs that undergo conformational changes─such as those induced by molecular partner binding or changes in solution environment─remains underexplored.
View Article and Find Full Text PDF