98%
921
2 minutes
20
Covalent organic frameworks (COFs) have attracted considerable attention in sample pretreatment because of their unique characteristics. However, the submicron or micron size of COFs has restricted their wider applications in solid-phase extraction (SPE). Herein, multiwalled nanotubes (MWNTs) were used as substrate materials to synthesize core-shell structured MWNTs@COFs composites (MWNTs@SNW-1) using a simple self-assembly method. The as-prepared MWNTs@SNW-1 composite exhibited a high BET surface area, good thermal stability, and good adsorption capacity. The MWNTs@SNW-1 composite was used as an adsorbent in cartridge-based SPE to extract four phytohormones before determining their levels by high-performance liquid chromatography. The experimental parameters affecting extraction efficiency, including the amount of adsorbents, solution pH, ionic strength, eluent type, and eluent volume, were investigated. The developed method showed a wide linear range (0.37-100 ng mL), low detection limits (0.11-0.32 ng mL), low limits of quantification (0.37-1.07 ng mL), high enrichment factors (45.9-49.3), and good reproducibility (<4.8%) for phytohormones. The developed analytical method was used to analyze trace phytohormones in fruit juices with good recoveries, highlighting the potential of the MWNTs@SNW-1 composite as an adsorbent in sample preparation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2022.462807 | DOI Listing |
Food Chem
September 2025
Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Fluoroquinolones are a popular class of antibiotics, which can lead to residues in food and the environment due to their abuse and illegal use. Consequently, this can pose a threat to human health. We hypothesized that a core-shell structured magnetic lanthanide metal-organic framework could serve as an effective dual-mode nanosensor, leveraging its antenna effect and peroxidase (POD)-like activity for the sensitive detection of fluoroquinolones.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy.
Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China.
Melasma is a facial hyperpigmentation disease that significantly impacts patients' quality of life. Clinical treatment is limited by the short half-lives and hydrophilicity of drugs, necessitating release curve optimization to maintain a stable therapeutic concentration for an extended period. This article utilizes natural biomaterials to design a core-shell structured microneedle, combining the "immediate release" and "delayed release" module to achieve programmed drug release.
View Article and Find Full Text PDFAdv Mater
September 2025
School of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Mi
Ammonia oxidation reaction (AOR) is critical for efficient ammonia utilization as a hydrogen carrier, yet state-of-the-art Pt-based catalysts suffer significant activity loss due to strong NO species (NO, NO) adsorption. Herein, Pd@Pt mesoporous core-shell nanospheres with interstitial Co in Pt shell (Pd@Pt-Co MCSN) are demonstrated as an excellent AOR electrocatalyst, which achieves a mass activity of 293.6 A g at 0.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu 610041, China. Electronic address: Zhaoy
Lanthanide-doped fluoride nanoparticles show great potential for optical thermometry and bioimaging. However, their applications are still constrained by inherent limitations in luminescence intensity and functional versatility. To overcome these challenges, we propose a core-active shell-inert shell nanostructure that integrates multifunctional capabilities within a single platform.
View Article and Find Full Text PDF