Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Western diet, characterized by excessive consumption of animal protein and reduced intake of vegetables and fruits, is also rich in sulfur, chlorine, and organic acids, which are the main sources of dietary acid load. A relationship between dietary acid load, renal function, and progression of chronic kidney disease has been demonstrated. Dietary modifications seem to contribute to a reduction in dietary acid load, and are associated with improved outcomes in individuals with chronic kidney disease (CKD). The aim of this paper was to review the existing evidence concerning the association between dietary acid load and renal function in nondialyzed individuals with CKD. A systematic review was conducted by gathering articles in electronic databases (MEDLINE/PubMed, Scopus, and Web of Science) from January 2018 to May 2021. Dietary acid load and GFR and/or albuminuria were analyzed. A total of 1078 articles were extracted, of which 5 met the inclusion criteria. Only one study found no statistically significant associations between the study variables. The remaining showed a negative association between dietary acid load and renal function. This systematic review confirmed the existence of an association between dietary acid load and renal function, with a high dietary acid load contributing to a decreased renal function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746801PMC
http://dx.doi.org/10.3390/nu14010170DOI Listing

Publication Analysis

Top Keywords

dietary acid
36
acid load
36
renal function
20
load renal
16
chronic kidney
12
kidney disease
12
association dietary
12
dietary
10
load
9
load relationship
8

Similar Publications

Potatoes are a global staple, yet their nutritional potential is underutilized. This study evaluates the biochemical and nutritional composition of Solanum okadae (S. okadae), a wild diploid potato species, compared to the cultivated S.

View Article and Find Full Text PDF

Background: A plant-focused, healthy dietary pattern, such as the Mediterranean diet enriched with dietary fiber, polyphenols, and polyunsaturated fats, is well known to positively influence the gut microbiota. Conversely, a processed diet high in saturated fats and sugars negatively impacts gut diversity, potentially leading to weight gain, insulin resistance, and chronic, low-grade inflammation. Despite this understanding, the mechanisms by which the Mediterranean diet impacts the gut microbiota and its associated health benefits remain unclear.

View Article and Find Full Text PDF

A scoping review on the possible immunometabolic properties of the furan fatty acid metabolite 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.

Am J Clin Nutr

September 2025

COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark. Electronic address:

Circulating levels of 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid (CMPF), a metabolite derived from dietary furan fatty acids primarily found in marine food sources, have long been recognized as biomarkers for fish intake. However, elevated CMPF levels are also observed in patients with type 2 diabetes or chronic kidney disease and in healthy people associated with a reduced infection risk, suggesting potential bioactive roles in metabolism and immune function. Yet, the possible causal mechanisms behind these associations are unknown.

View Article and Find Full Text PDF

Background: Dietary fiber supports metabolic health via microbial fermentation, producing short-chain fatty acids (SCFAs). However, metabolic responses to fiber vary between individuals, potentially due to differences in gut microbiota composition. The Prevotella-to-Bacteroides (P/B) ratio has emerged as a potential biomarker for fiber responsiveness.

View Article and Find Full Text PDF

Background: Oxidative stress (OS) accelerates the pathogenesis of coronary artery disease (CAD) by contributing to atherosclerotic plaque formation. Current research indicates that antioxidants can mitigate OS by reducing the production of free radicals. Despite many studies that have tested the effects of antioxidants on oxidative stress in patients with CAD, the literature still lacks an updated and comprehensive systematic review.

View Article and Find Full Text PDF