98%
921
2 minutes
20
In this work, the application of high-power LED and commercial, low-price LED for heterogeneous photocatalysis with TiO and ZnO photocatalysts are studied and compared, focusing on the effect of light intensity, photon energy, quantum yield, electrical energy consumption, and effect of matrices and inorganic components on radical formation. Coumarin (COU) and its hydroxylated product (7-HC) were used to investigate operating parameters on the OH formation rate. In addition to COU, two neonicotinoids, imidacloprid and thiacloprid, were also used to study the effect of various LEDs, matrices, and inorganic ions. The transformation of COU was slower for LED than for LED, but r/r ratio was significantly higher for LED. The COU mineralization rate was the same for both photocatalysts using LED, but a significant difference was observed using LED. The impact of matrices and their main inorganic components Cl and HCO were significantly different for ZnO and TiO. The negative effect of HCO was evident, however, in the case of high-power LED and TiO, and the formation of CO almost doubled the r and contributes to the conversion of neonicotinoids by altering the product distribution and mineralization rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8746656 | PMC |
http://dx.doi.org/10.3390/nano12010005 | DOI Listing |
J Am Chem Soc
September 2025
State Key Laboratory of Chemistry for NBC Hazards Protection, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
The activation of methane and other gaseous hydrocarbons at low temperature remains a substantial challenge for the chemistry community. Here, we report an anaerobic photosystem based on crystalline borocarbonitride (BCN) supported Fe-O nanoclusters, which can selectively functionalize C-H bonds of methane, ethane, and higher alkanes to value-added organic chemicals at 12 °C. Scanning transmission electron microscopy and X-ray absorption spectroscopy corroborated the ultrafine FeOOH and FeO species in Fe-O clusters, which enhanced the interfacial charge transfer/separation of BCN as well as the chemisorption of methane.
View Article and Find Full Text PDFAdv Sci (Weinh)
September 2025
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350108, P. R. China.
The construction of strong metal-support interactions (SMSI) is an effective strategy to enhance and control heterogeneous catalysts. However, conventional methods require pre-synthesized metal-loaded catalysts, followed by SMSI formation via high-temperature treatment under oxidative/reductive atmospheres, adsorbate-mediated treatment, and photo-treatment, adding complexity to catalyst synthesis and hindering continuous interfacial tuning. In this work, a "photobreeding" method is employed to treat ZnCdS, leveraging the UV-induced photochromic reaction of ZnS to generate metallic Zn at room temperature, while CdS remains inert.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
Designing long-lived excitons in photocatalysts is crucial for efficient charge separation. However, most of the current organic photocatalysts are characterized by a relatively short exciton lifetime within the range of picoseconds due to localized excitons with large binding energies. Herein, we report the design of ultralong-lived excitons with a lifetime exceeding 8000 ps by constructing metallo-quinoline-incorporated covalent organic frameworks (COFs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
College of Polymer Science and Engineering, State Key Laboratory of Advanced Polymer Materials, Sichuan University, Chengdu, 610065, P.R. China.
Simultaneous promotion of charge and mass transportation between catalytic centers and reactants is crucial for photocatalysis but remains a substantial challenge on account of the widespread use of homogeneous or heterogeneous photocatalysts that suffer from sluggish reactant-diffusion kinetics or interfacial electron-transport resistance, respectively. Herein, we demonstrate the construction of conjugated microporous polymer aerogels as available quasi-homogeneous photocatalysts by integrating structural designability, which allows for the incorporation of electron-acceptor building blocks featuring ultralong-lived excitons as high-concentration local catalytic centers, and hierarchically porous gel networks that wrap solvent and reactants to provide a "single" reaction phase without interfacial resistance. A total of 18 samples of C─H functionalization reactions underpinned by four different mechanisms were screened to showcase the general applicability of the obtained aerogel photocatalysts, which achieved remarkable conversion efficiencies, gram-scale productivities, and recyclability.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China.
While intricate designs have been implemented to transform noble-metal complexes and sophisticated organic molecules into reactive photocatalysts for the single-electron reduction of unactivated alkyl halides, the development of highly reducing photocatalytic systems based on earth-abundant metals is still in its early stages. Herein, we show that a simple terpyridine-ligated nickel(II) complex, integrated into an imine-linked covalent organic framework, can be readily reduced by photoexcited Hantzsch esters to produce a heterogeneous nickel(I) photocatalyst with a fairly low excited-state oxidation potential of approximately -3.5 V (referenced to the saturated calomel electrode).
View Article and Find Full Text PDF