Neural substrates of accurate perception of time duration: A functional magnetic resonance imaging study.

Neuropsychologia

Department of System Neuroscience, Division of Cerebral Integration, National Institute for Physiological Sciences (NIPS), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies),

Published: February 2022


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Time duration, an essential feature of the physical world, is perceived and cognitively interpreted subjectively. While this perception is deeply connected with arousal and interoceptive signals, the underlying neural mechanisms remain elusive. As the insula is critical for integrating information from the external world with the organism's inner state, we hypothesized that it might have a central role in the perception of time duration and contribute to its estimation accuracy. We conducted a functional magnetic resonance imaging study with 27 healthy participants performing temporal duration and pitch bisection tasks that used the same stimuli. By comparison with two referents with short and long duration in the time range of 1 s (close to the heart rate period), or low and high pitch, participants had to decide whether target stimuli were closer in duration or pitch to the referent stimuli. The temporal bisection point between short and long duration perception was obtained through a psychometric response curve analysis for each participant. The deviation between the bisection point and the average of reference stimuli durations was used as a marker of duration accuracy. Duration discrimination-specific activation, contrasted to pitch discrimination, was found in the dorsomedial prefrontal cortex, bilateral cerebellum, and right anterior insular cortex (AIC), extending to the inferior frontal gyrus (IFG), inferior parietal lobule, and frontal pole. The activity in the right AIC and IFG was positively correlated with the accuracy of duration discrimination. The right AIC is known to be related to the reproduction of duration, whereas the right IFG is involved in categorical decisions. Thus, the comparison between the referent durations reproduced in the AIC and the target duration may occur in the right IFG. We conclude that the right AIC and IFG contribute to the accurate perception of temporal duration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuropsychologia.2022.108145DOI Listing

Publication Analysis

Top Keywords

duration
13
time duration
12
accurate perception
8
perception time
8
functional magnetic
8
magnetic resonance
8
resonance imaging
8
imaging study
8
temporal duration
8
duration pitch
8

Similar Publications

Cardiac resynchronization therapy (CRT) improves outcomes in heart failure, but prior interventions like percutaneous mitral annuloplasty may hinder lead placement. We present a 70-year-old male with ischemic cardiomyopathy and severe functional mitral regurgitation who previously received a Carillon device. Due to coronary sinus inaccessibility, left bundle branch area pacing optimized cardiac resynchronization therapy (LOT-CRT) was performed.

View Article and Find Full Text PDF

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.

Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.

View Article and Find Full Text PDF

Ultrasonic pulse repetition rates triggering escape responses of a moth pest.

Pest Manag Sci

September 2025

Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.

Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.

View Article and Find Full Text PDF