98%
921
2 minutes
20
To get an optimal product of orthopaedic implant or regenerative medicine needs to follow trial-and-error analyses to investigate suitable product's material, structure, mechanical properites etc. The whole process from tests to clinical trials is expensive and time-consuming. Computational model is seen as a useful analysis tool to make the product development. A series of models for simulating tissue engineering process from cell attachment to tissue regeneration are reviewed. The challenging is that models for simulating tissue engineering processes are developed separately. From cell to tissue regeneration, it would go through blood injection after moving out the defect; to cell disperse and attach on the scaffold; to proliferation, migration and differentiation; and to the final part-becoming mature tissues. This paper reviewed models that related to tissue engineering process, aiming to provide an opportunity for researchers to develop a mature model for whole tissue engineering process. This article focuses on the model analysis methods of cell adhesion, nutrient transport and cell proliferation, differentiation and migration in tissue engineering. In cell adhesion model, one of the most accurate method is to use discrete phase model to govern cell movement and use Stanton-Rutland model for simulating cell attachment. As for nutrient transport model, numerical model coupling with volume of fluid model and species transport model together is suitable for predicting nutrient transport process. For cell proliferation, differentiation and migration, finite element method with random-walk algorithm is one the most advanced way to simulate these processes. Most of the model analysis methods require further experiments to verify the accuracy and effectiveness. Due to the lack of technology to detect the rate of nutrient diffusion, there are especially few researches on model analysis methods in the area of blood coagulation. Therefore, there is still a lot of work to be done in the research of the whole process model method of tissue engineering. In the future, the numerical model would be seen as an optimal way to investigate tissue engineering products bioperformance and also enable to optimize the parameters and material types of the tissue engineering products.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.24920/004007 | DOI Listing |
J Imaging Inform Med
September 2025
Department of Biomedical Engineering, Gachon University, Seongnam-Si 13120, Gyeonggi-Do, Republic of Korea.
To develop and validate a deep-learning-based algorithm for automatic identification of anatomical landmarks and calculating femoral and tibial version angles (FTT angles) on lower-extremity CT scans. In this IRB-approved, retrospective study, lower-extremity CT scans from 270 adult patients (median age, 69 years; female to male ratio, 235:35) were analyzed. CT data were preprocessed using contrast-limited adaptive histogram equalization and RGB superposition to enhance tissue boundary distinction.
View Article and Find Full Text PDFPharm Res
September 2025
Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
Objective: A fundamental understanding of drug diffusion and binding processes is critical for the design and optimization of a wide variety of drug delivery devices. Most of the past literature assume binding to occur uniformly throughout the tissue, or, at best, in specific layers of a multilayer tissue. However, in many realistic scenarios, such as in cancer-targeting drugs, drug binding occurs in discrete irregularly shaped regions.
View Article and Find Full Text PDFEur Spine J
September 2025
Department of Spine Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
Purpose: This study aimed to investigate the relationship between tissue bridges and bladder and bowel outcomes in chronic cervical spinal cord injury (SCI).
Methods: Between July 2020 and January 2024, 44 patients with chronic cervical SCI were retrospectively included in this cross-sectional study at a specialized SCI center. Lesion severity was assessed by tissue bridges, lesion length, lesion width, and lesion area.
Int J Impot Res
September 2025
Department of Urology, University College London Hospitals, London, United Kingdom.
The need to enhance the quality of life and functionality of patients with a number of diseases, such as congenital abnormalities, traumas, and gender incongruence, has contributed to a significant development in the field of male genital reconstructive surgery. This article highlights the roots of penile reconstructive surgeries over history, emphasizing innovative achievements that have shaped modern practices. Critical advancements that have improved surgical accuracy and post-operative care are examined, including new imaging modalities, penile prosthesis implantation, and complete phallic reconstruction.
View Article and Find Full Text PDFNature
September 2025
Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Key Laboratory of RNA Innovation Science and Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
Antigen-induced clustering of cell surface receptors, including T cell receptors and Fc receptors, represents a widespread mechanism in cell signalling activation. However, most naturally occurring antigens, such as tumour-associated antigens, stimulate limited receptor clustering and on-target responses owing to insufficient density. Here we repurpose proximity labelling, a method used to biotinylate and identify spatially proximal proteins, to amplify designed probes as synthetic antigen clusters on the cell surface.
View Article and Find Full Text PDF