98%
921
2 minutes
20
Objective: Childhood obesity is a major health concern worldwide. Previous studies have explored the relationship between obesity and gut microbiota. However, the results from such studies remain contradictory.
Methods: In the present nested case-control study, based on a twin birth cohort study, the relationship between gut microbiota diversity and overweight/obesity in 1- and 6-month-old infants was explored. Twins were enrolled when one child had normal weight and the other child was overweight/obese at six months old. For both infants, stool samples were collected at 1 and 6 months of age. Finally, 12 twins were enrolled in the study. The gut microbiota was identified by 16S rRNA gene sequencing in the V3-V4 area. Six of the twins were monozygotic.
Results: The results revealed that the microbiota communities of monozygotic twins were similar to those of dizygotic twins. The relative abundance (RA) of microbiota of 1-month-old twins was significantly higher than that of 6-month-old twins. However, the microbiota diversity of 1-month-old twins was significantly lower than that of 6-month-old twins. In addition, 6-month-old twins had significantly higher RA levels of Bifidobacterium and Lachnospiracea incertae sedis than 1-month-old twins. The 6-month-old group had significantly lower RA levels of Veillonella, Klebsiella, Akkermansia, Streptococcus, or Staphylococcus than the 1-month-old group. At six months, the RA level of Clostridium sensu stricto was higher in the overweight/obesity group than the normal-weight group.
Conclusion: These findings imply that changes in gut microbiota diversity during infancy may contribute to the development of obesity in early infancy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11596-021-2476-1 | DOI Listing |
Alzheimers Res Ther
September 2025
Department of Neurology, Saarland University, Kirrberger Straße, 66421, Homburg/Saar, Germany.
Background: Alzheimer's disease (AD) patients and animal models exhibit an altered gut microbiome that is associated with pathological changes in the brain. Intestinal miRNA enters bacteria and regulates bacterial metabolism and proliferation. This study aimed to investigate whether the manipulation of miRNA could alter the gut microbiome and AD pathologies.
View Article and Find Full Text PDFBMC Vet Res
September 2025
Department of Poultry Production, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt.
This study investigated the impact of dietary zeolite supplementation on growth, cecal microbiota and digesta viscosity, digestive enzymes, carcass traits, blood constituents, and antioxidant parameters of broilers. A completely randomized design was used with 240 one-day-old broiler chicks randomly assigned to three dietary treatments (0%, 1.5%, and 3% zeolite as a feed additive) with four replicates of 20 chicks each.
View Article and Find Full Text PDFJ Mol Neurosci
September 2025
Department of Physiology, School of Medicine, Dokuz Eylul University, Izmir, Turkey.
The ketogenic diet (KD), a high-fat, low-carbohydrate regimen, has been shown to exert neuroprotective effects in various neurological models. This study explored how KD-alone or combined with antibiotic-induced gut microbiota depletion-affects cognition and neuroinflammation in aging. Thirty-two male rats (22 months old) were assigned to four groups (n = 8): control diet (CD), ketogenic diet (KD), antibiotics with control diet (AB), and antibiotics with KD (KDAB).
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Penang, Malaysia.
Ciprofloxacin (CIP), a widely used fluoroquinolone antibiotic, has become a significant contaminant in aquatic environments due to its extensive use and incomplete metabolism. This review comprehensively analyses CIP pollution, including its sources, environmental and health impacts, and removal strategies. Chemical methods such as advanced oxidation processes and physical techniques like adsorption are evaluated for their efficiency in CIP removal.
View Article and Find Full Text PDFNat Microbiol
September 2025
Joan and Sanford I. Weill Department of Medicine, Gastroenterology and Hepatology Division, Weill Cornell Medicine, New York, NY, USA.
Microbial influence on cancer development and therapeutic response is a growing area of cancer research. Although it is known that microorganisms can colonize certain tissues and contribute to tumour initiation, the use of deep sequencing technologies and computational pipelines has led to reports of multi-kingdom microbial communities in a growing list of cancer types. This has prompted discussions on the role and scope of microbial presence in cancer, while raising the possibility of microbiome-based diagnostic, prognostic and therapeutic tools.
View Article and Find Full Text PDF