98%
921
2 minutes
20
Background: Alzheimer's disease (AD) is a neurodegenerative condition driven by multifactorial etiology. Mild cognitive impairment (MCI) is a transitional condition between healthy aging and dementia. No reliable biomarkers are available to predict the conversion from MCI to AD.
Objective: To evaluate the use of machine learning (ML) on a wealth of data offered by the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Alzheimer's Disease Metabolomics Consortium (ADMC) database in the prediction of the MCI to AD conversion.
Methods: We implemented an ML-based Random Forest (RF) algorithm to predict conversion from MCI to AD. Data related to the study population (587 MCI subjects) were analyzed by RF as separate or combined features and assessed for classification power. Four classes of variables were considered: neuropsychological test scores, AD-related cerebrospinal fluid (CSF) biomarkers, peripheral biomarkers, and structural magnetic resonance imaging (MRI) variables.
Results: The ML-based algorithm exhibited 86% accuracy in predicting the AD conversion of MCI subjects. When assessing the features that helped the most, neuropsychological test scores, MRI data, and CSF biomarkers were the most relevant in the MCI to AD prediction. Peripheral parameters were effective when employed in association with neuropsychological test scores. Age and sex differences modulated the prediction accuracy. AD conversion was more effectively predicted in females and younger subjects.
Conclusion: Our findings support the notion that AD-related neurodegenerative processes result from the concerted activity of multiple pathological mechanisms and factors that act inside and outside the brain and are dynamically affected by age and sex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-210573 | DOI Listing |
Alzheimers Dement
September 2025
Department of Population Health Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA.
Introduction: We compared and measured alignment between the Health Level Seven (HL7) Fast Healthcare Interoperability Resources (FHIR) standard used by electronic health records (EHRs), the Clinical Data Interchange Standards Consortium (CDISC) standards used by industry, and the Uniform Data Set (UDS) used by the Alzheimer's Disease Research Centers (ADRCs).
Methods: The ADRC UDS, consisting of 5959 data elements across eleven packets, was mapped to FHIR and CDISC standards by two independent mappers, with discrepancies adjudicated by experts.
Results: Forty-five percent of the 5959 UDS data elements mapped to the FHIR standard, indicating possible electronic obtainment from EHRs.
Alzheimers Dement
September 2025
Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China.
Cognitive impairment and dementia, including Alzheimer's disease (AD), pose a global health crisis, necessitating non-invasive biomarkers for early detection. This review highlights the retina, an accessible extension of the central nervous system (CNS), as a window to cerebral pathology through structural, functional, and molecular alterations. By synthesizing interdisciplinary evidence, we identify retinal biomarkers as promising tools for early diagnosis and risk stratification.
View Article and Find Full Text PDFAlzheimers Dement
September 2025
Alzheimer's Disease Convergence Research Center, Samsung Medical Center, Seoul, South Korea.
Introduction: We developed and validated age-related amyloid beta (Aβ) positron emission tomography (PET) trajectories using a statistical model in cognitively unimpaired (CU) individuals.
Methods: We analyzed 849 CU Korean and 521 CU non-Hispanic White (NHW) participants after propensity score matching. Aβ PET trajectories were modeled using the generalized additive model for location, scale, and shape (GAMLSS) based on baseline data and validated with longitudinal data.
Int J Plant Anim Environ Sci
August 2025
Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.
View Article and Find Full Text PDFAlzheimers Dement (Amst)
September 2025
Introduction: Simple screening tools are critical for assessing Alzheimer's disease (AD)-related pre-dementia changes. This study investigated longitudinal scores from the Quick Dementia Rating System (QDRS), a brief study partner-reported measure, in relation to baseline levels of the AD biomarker plasma pTau217 in individuals unimpaired at baseline.
Methods: Data from the Wisconsin Registry for Alzheimer's Prevention (N = 639) were used to examine whether baseline plasma pTau217 (ALZpath assay on Quanterix platform) modified QDRS or Preclinical Alzheimer's Cognitive Composite (PACC3) trajectories (mixed-effects models; time = age).