Nanoscale Electrostatic Modulation of Mega-Ampere Electron Current in Solid-Density Plasmas.

Phys Rev Lett

Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, Center for Advanced Material Diagnostic Technology, and College of Engineering Physics, Shenzhen Technology University, Shenzhen 518118, People's Republic of China.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transport of high-current relativistic electron beams in dense plasmas is of interest in many areas of research. However, so far the mechanism of such beam-plasma interaction is still not well understood due to the appearance of small time- and space-scale effects. Here we identify a new regime of electron beam transport in solid-density plasma, where kinetic effects that develop on small time and space scales play a dominant role. Our three-dimensional particle-in-cell simulations show that in this regime the electron beam can evolve into layered short microelectron bunches when collisions are relatively weak. The phenomenon is attributed to a secondary instability, on the space- and timescales of the electron skin depth (tens of nanometers) and few femtoseconds of strong electrostatic modulation of the microelectron current filaments formed by Weibel-like instability of the original electron beam. Analytical analysis on the amplitude, scale length, and excitation condition of the self-generated electrostatic fields is clearly validated by the simulations.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.245002DOI Listing

Publication Analysis

Top Keywords

electron beam
12
electrostatic modulation
8
regime electron
8
electron
6
nanoscale electrostatic
4
modulation mega-ampere
4
mega-ampere electron
4
electron current
4
current solid-density
4
solid-density plasmas
4

Similar Publications

In this study, silicon nanoparticles (NPs) were produced by pulsed laser ablation in a liquid, aiming to investigate the influence of a laser beam profile on the properties of the resultant NPs. Morphology, inner structure, and phase composition of the formed NPs were characterized by means of ultraviolet-visible spectroscopy, high-resolution transmission electron microscopy, and Raman and photoluminescence spectroscopies, and the correlation of the NP properties with the laser beam profile was studied. Three different beam profiles were selected, namely, a Bessel beam produced using an axicon, an annular profile formed using a combination of an axicon and a converging lens, and a Gaussian beam focused on the surface of a Si target using the same converging lens.

View Article and Find Full Text PDF

The well-known technique of microtomy, which is an essential cutting tool, was first developed for light and transmission electron microscope uses, but it is currently also utilized to prepare specimens for atomic force microscopy (AFM), ion microscopy using a focused ion beam (FIB), and scanning electron microscopy (SEM). Ultramicrotomy can only be used on soft substances and metals that are sufficiently ductile to be cut with a diamond knife. Before being sliced by a microtome, many soft materials must first go through numerous preparatory processes.

View Article and Find Full Text PDF

Background: Another approach to improve the dose conformity is to use charged particles like protons instead of the conventional X- and γ-rays. Protons exhibit a specific depth-dose distribution which allows to achieve a more targeted dose deposition and a significant sparing of healthy tissue behind the tumor. In particular, proton therapy has, therefore, become a routinely prescribed treatment for tumors located close to sensitive structures.

View Article and Find Full Text PDF

Background: Serum and other blood-derived products are widely used in biomedical and biopharmaceutical processes, especially for the production of vaccines or cell therapeutic applications. To ensure quality and safety, each serum lot undergoes testing for sterility to minimize the risk of disease transmission. A currently performed standard procedure is gamma-irradiation of serum for effectively killing pathogens.

View Article and Find Full Text PDF

Reversible Manipulations of Triangular-Shaped Mirror Twin Boundary Loops in Ultrathin NiTe.

Nano Lett

September 2025

School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China.

High-density mirror twin boundaries (MTBs) embedded in two-dimensional (2D) transition metal dichalcogenides (TMDCs) have emerged as fascinating platforms for exploring charge density wave and Tomonaga-Luttinger liquid-related issues. However, the reversible manipulation of high-density MTBs in 2D TMDCs remains challenging. Herein, we report the first fabrication of high-density MTB loops in ultrathin 1T-NiTe on the SrTiO(001) substrate, by postannealing as-grown 1T-NiTe under Te-deficient conditions.

View Article and Find Full Text PDF