Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We examined the regularity of distribution and chemical structure characteristics of organic carbon in soda alkaline fluvo-aquic soil aggregates after straw returning. We set up six different straw returning treatments in 2020, including 0 (CK), 2100 (ST), 4200 (ST), 6300 (ST), 8400 (ST) and 10500 kg·hm(full straw returning, ST). We measured organic carbon (OC) content and infrared spectroscopy characteristics of aggregates and internal different components through physical fractionation method and infrared spectroscopy technology. The results showed that: 1) the OC content of soil and all aggregates increased with the increasing amount of returned straw; 2) different straw returning treatments significantly increased the content of light organic carbon (LOC) in 53-250 μm aggregates. Compared with CK, ST and ST treatments significantly increased the content of mineral-bound organic carbon (MOC) in 250-2000 μm aggregates and the content of fine particulate organic carbon (fPOC) in 53-250 μm aggregates. The OC content of different components in aggregates followed the order of LOC>MOC>POC. The fPOC content in 250-2000 μm aggregates was higher than that of coarse particulate organic carbon (cPOC); 3) the results of principal component analysis showed that OC chemical structure of different components in aggregates was seldom affected by the straw returning, but was mainly affected by particle size; 4) the OCs in >250 μm aggregates were mainly derived from aromatic carbon and polysaccharides. The OCs in 53-250 μm aggregates were mainly derived from carbohydrates, such as monosaccharides and polysaccharides, while the OC in <53 μm aggregates was mainly derived from aliphatic carbon, alkyl carbon, aromatic carbon and phenolic alcohols. Within different aggregates, LOC was mainly derived from aliphatic carbon, aromatic carbon and phenolic alcohols. Particulate organic carbon (POC) was mainly derived from carbohydrates. MOC was mainly derived from alkyl carbon. In summary, straw returning increased organic carbon content in soil aggregates in short term, but did not alter organic carbon chemical structure. The organic carbon chemical structures of the same particle size fractions in different aggregates were similar. The organic carbon content increased with the decreases of particle size, and the chemical structure tended to be stable. Therefore, straw returning promoted the fixation of organic carbon by saline soil aggregates in short term, but did not change their chemistry structural characteristics, indicating that the location and protection degree of soil organic carbon in aggregates were the main factors affecting the chemical structure of organic carbon.

Download full-text PDF

Source
http://dx.doi.org/10.13287/j.1001-9332.202112.021DOI Listing

Publication Analysis

Top Keywords

organic carbon
28
straw returning
24
μm aggregates
24
aggregates
12
soil aggregates
12
53-250 μm
12
structure characteristics
8
characteristics organic
8
carbon
8
aggregates straw
8

Similar Publications

Ampere-level electrocatalytic nitrate reduction to ammonia (eNRA) offers a carbon-neutral alternative to the Haber-Bosch process. However, its energy efficiency is critically hampered by the inherent conflict between the reaction and diffusion. Herein, we propose a reaction-diffusion-coupled strategy implemented on a well-tailored CuCoNiRuPt high-entropy alloy aerogel (HEAA) to simultaneously realize energy barrier homogenization and accelerate mass transport, endowing ampere-level eNRA with a high energy efficiency.

View Article and Find Full Text PDF

The rapid development of industry and agriculture has led to a significant increase in the toxicity and pollution of cadmium (Cd) and lead (Pb) in soil. Consequently, soil remediation employing biochar or modified biochar has emerged as a cost-effective and environmentally sustainable approach to address the issue of heavy metal (HM) ion pollution. PEI-functionalization biochar (PBC) derived from corn straw (PBCC), wood straw (PBCW), and rice straw (PBCR) was synthesized to immobilize Cd and Pb in contaminated acidic yellow soil.

View Article and Find Full Text PDF

The Perseverance rover has explored and sampled igneous and sedimentary rocks within Jezero Crater to characterize early Martian geological processes and habitability and search for potential biosignatures. Upon entering Neretva Vallis, on Jezero Crater's western edge, Perseverance investigated distinctive mudstone and conglomerate outcrops of the Bright Angel formation. Here we report a detailed geological, petrographic and geochemical survey of these rocks and show that organic-carbon-bearing mudstones in the Bright Angel formation contain submillimetre-scale nodules and millimetre-scale reaction fronts enriched in ferrous iron phosphate and sulfide minerals, likely vivianite and greigite, respectively.

View Article and Find Full Text PDF

Photothermal/GSH-dual-responsive organic quantum dots enabling traceable DNA delivery.

Int J Biol Macromol

September 2025

School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China. Electronic address:

Quantum dots, with their superior intrinsic fluorescence and photostability, are emerging as a promising option for cancer gene therapy, diagnosis, and imaging. However, low gene delivery efficiency, insufficient targeting, and responsiveness remain challenges. To address these issues, PEI-based carbon quantum dots (CPNCs) were constructed by crosslinking polyethylenimine quantum dots (PQDs) with carbon quantum dots (CQDs) via disulfide bonds.

View Article and Find Full Text PDF

Unlocking low NO emissions from nitrate-laden wastewater in constructed wetlands: critical role of pyrrhotite substrate layer in mediating nitrate-dependent sulfide oxidation.

Bioresour Technol

September 2025

Research Division for Water Environmental Science and Engineering, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China. Electronic address:

Constructed wetlands (CWs) treating nitrate-rich wastewater often face incomplete denitrification and elevated NO emissions due to insufficient electron donors. Pyrrhotite as a CW substrate demonstrated potential for enhancing autotrophic denitrification through coupled sulfur and iron biological oxidation. However, the impact of pyrrhotite layer positioning on regulating NO emissions and underlying mechanisms remains unclear.

View Article and Find Full Text PDF