98%
921
2 minutes
20
DNA methylation affects gene expression and maintains genome integrity. The DNA-dependent RNA polymerase IV (Pol IV), together with the RNA-dependent RNA polymerase RDR2, produces double-stranded small interfering RNA precursors essential for establishing and maintaining DNA methylation in plants. We determined the cryo–electron microscopy structures of the Pol IV–RDR2 holoenzyme and the backtracked transcription elongation complex. These structures reveal that Pol IV and RDR2 form a complex with their active sites connected by an interpolymerase channel, through which the Pol IV–generated transcript is handed over to the RDR2 active site after being backtracked, where it is used as the template for double-stranded RNA (dsRNA) synthesis. Our results describe a ‘backtracking-triggered RNA channeling’ mechanism underlying dsRNA synthesis and also shed light on the evolutionary trajectory of eukaryotic RNA polymerases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.abj9184 | DOI Listing |
Plant Cell
December 2024
Beijing Advanced Center of RNA Biology (BEACON), State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, School of Life Sciences, Peking University, Beijing 100871, China.
RNA silencing negatively regulates gene expression at the transcriptional and posttranscriptional levels through DNA methylation, histone modification, mRNA cleavage, and translational inhibition. Small interfering RNAs (siRNAs) of 21 to 24 nucleotides are processed from double-stranded RNAs by Dicer-like (DCL) enzymes and play essential roles in RNA silencing in plants. Here, we demonstrated that ALTERED MERISTEM PROGRAM1 (AMP1) and its putative paralog LIKE AMP1 (LAMP1) impair RNA silencing by repressing the biogenesis of a subset of inverted repeat (IR)-derived siRNAs in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFSci Adv
August 2024
Key Laboratory of Synthetic Biology, State Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
RNA polymerase IV (Pol IV) forms a complex with RNA-directed RNA polymerase 2 (RDR2) to produce double-stranded RNA (dsRNA) precursors essential for plant gene silencing. In the "backtracking-triggered RNA channeling" model, Pol IV backtracks and delivers its transcript's 3' terminus to RDR2, which synthesizes dsRNA. However, the mechanisms underlying Pol IV backtracking and RNA protection from cleavage are unclear.
View Article and Find Full Text PDFTrends Biochem Sci
March 2024
Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Institute for Biological Electron Microscopy
In plants, two atypical DNA-dependent RNA polymerases, RNA polymerase IV (Pol IV) and Pol V, and an RNA-DEPENDENT RNA POLYMERASE 2 (RDR2) together produce noncoding RNAs (ncRNAs) to guide the plant-specific RNA-directed DNA methylation (RdDM). Although both Pol IV and Pol V have evolved from the canonical Pol II, they have adapted to different roles in RdDM. The mechanisms of their adaptation are key to understanding plant DNA methylation and the divergent evolution of polymerases.
View Article and Find Full Text PDFYi Chuan
July 2022
Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
DNA methylation is a type of stable epigenetic modifications that plays crucial roles in regulating gene expression, silencing transposons and maintaining genome stability. In plants, the de novo DNA methylation is established via a pathway termed as RNA-directed DNA methylation (RdDM). The plant-specific DNA-dependent RNA polymerase IV (Pol IV) as the core protein in RdDM pathway produces non-coding RNAs that direct the establishment of DNA methylation, regulates gene expression and controls plant development.
View Article and Find Full Text PDFElife
January 2022
Department of Biology and Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, United States.
In plants, selfish genetic elements, including retrotransposons and DNA viruses, are transcriptionally silenced by RNA-directed DNA methylation. Guiding the process are short interfering RNAs (siRNAs) cut by DICER-LIKE 3 (DCL3) from double-stranded precursors of ~30 bp that are synthesized by NUCLEAR RNA POLYMERASE IV (Pol IV) and RNA-DEPENDENT RNA POLYMERASE 2 (RDR2). We show that Pol IV's choice of initiating nucleotide, RDR2's initiation 1-2 nt internal to Pol IV transcript ends and RDR2's terminal transferase activity collectively yield a code that influences which precursor end is diced and whether 24 or 23 nt siRNAs are produced.
View Article and Find Full Text PDF