98%
921
2 minutes
20
Background: Optimal management of intracranial infections relies on microbiological diagnosis and antimicrobial choice, but conventional culture-based testing is limited by pathogen viability and pre-sampling antimicrobial exposure. Broad-range 16S rRNA gene sequencing has been reported in the management of culture-negative infections but its utility in intracranial infection is not well-described. We studied the efficacy of 16S rRNA gene sequencing to inform microbiological diagnosis and antimicrobial choice in intracranial infections.
Methods: This was a retrospective study of all intraoperative neurosurgical specimens sent for 16S rRNA gene sequencing over an 8-year period at a regional neurosurgical centre in the UK. Specimen selection was performed using multidisciplinary approach, combining neurosurgical and infection specialist discussion.
Results: Twenty-five intraoperative specimens taken during neurosurgery from 24 patients were included in the study period. The most common reason for referral was pre-sampling antimicrobial exposure (68%). Bacterial rDNA was detected in 60% of specimens. 16S rRNA gene sequencing contributed to microbiological diagnosis in 15 patients and informed antimicrobial management in 10 of 24 patients with intracranial infection. These included targeted antibiotics after detection of a clinically-significant pathogen that had not been identified through other microbiological testing (3 cases), detection of commensal organisms in neurosurgical infection which justified continued broad cover (2 cases) and negative results from intracranial lesions with low clinical suspicion of bacterial infection which justified avoidance or cessation of antibiotics (5 cases).
Conclusion: Overall, 16S rRNA gene sequencing represented an incremental improvement in diagnostic testing and was most appropriately used to complement, rather than replace, conventional culture-based testing for intracranial infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11418903 | PMC |
http://dx.doi.org/10.1080/02688697.2021.2016620 | DOI Listing |
Curr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFmBio
September 2025
Department of Microbiology, Haukeland University Hospital, Bergen, Norway.
Unlabelled: There is a considerable interest in the association between and colorectal cancer (CRC). Recently, it was suggested that this association is valid only for a distinct clade of ( C2) and that strains belonging to another clade ( C1) are only associated with the oral cavity. It was further suggested that this made C1 a natural comparator when looking for candidate genes associated with the pathogenicity of C2.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, USA.
Populations of the acidophilic purple nonsulfur bacterium were identified in two geographically distinct thermal areas in Yellowstone National Park (Wyoming, USA), as confirmed by 16S rRNA gene sequencing and detection of characteristic methoxylated ketocarotenoids. Microcosm-based carbon uptake assays where oxygenic photosynthesis was excluded via addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea yielded a light-driven dissolved inorganic carbon (DIC) assimilation rate (7 ± 2 mg C g C h) comparable to those of highly productive algal mats in acidic hot springs, suggesting that may be performing photoautotrophy at the time of the assay. Rates of acetate assimilation were more than two orders of magnitude lower than DIC assimilation and did not differ between light and dark treatments, indicating photoheterotrophic use of acetate was not occurring, though photoheterotrophic assimilation of other organic compounds cannot be excluded.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
Natural soils are reservoirs of potentially beneficial microbes that can improve plant performance. Here, we isolated 75 bacterial strains from surface-sterilised roots of Arabidopsis thaliana (Arabidopsis) grown in a natural soil derived from an alder swamp. Culture-dependent isolation of individual strains from the roots, followed by monoassociation-based screening, identified seven bacteria that promoted Arabidopsis seedling weight.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Silica nanoparticles (SiONPs), as emerging foliar nanofertilizers, demonstrate promising potential in agriculture. However, whether foliar application of SiONPs alters belowground soil metabolites and microbe composition and abundance remains largely unknown. In this study, 3-week-old cucumber plants were foliar-sprayed with fumed or Stöber SiO NPs dosing at -4 mg of NPs per plant for 5 days.
View Article and Find Full Text PDF