Article Synopsis

  • Nanotechnology is crucial for achieving the United Nations' Sustainable Development Goals by providing innovative technological solutions and fostering interdisciplinary collaboration.
  • The field can accelerate sustainability efforts through targeted solutions, technology translation, and promoting the circular economy, supported by examples of national initiatives worldwide.
  • A global network of leading nanocenters has been created to tackle sustainability challenges and invite further participation from others in the field.

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Nanotechnology has important roles to play in international efforts in sustainability. We discuss how current and future capabilities in nanotechnology align with and support the United Nations' Sustainable Development Goals. We argue that, as a field, we can accelerate the progress toward these goals both directly through technological solutions and through our special interdisciplinary skills in communication and tackling difficult challenges. We discuss the roles of targeting solutions, technology translation, the circular economy, and a number of examples from national efforts around the world in reaching these goals. We have formed a network of leading nanocenters to address these challenges globally and seek to recruit others to join us.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.1c10919DOI Listing

Publication Analysis

Top Keywords

nanotechnology
4
nanotechnology sustainable
4
sustainable future
4
future addressing
4
addressing global
4
global challenges
4
challenges international
4
international network4sustainable
4
network4sustainable nanotechnology
4
nanotechnology nanotechnology
4

Similar Publications

Cardiovascular diseases (CVDs) remain a leading cause of death, particularly in developing countries, where their incidence continues to rise. Traditional CVD diagnostic methods are often time-consuming and inconvenient, necessitating more efficient alternatives. Rapid and accurate measurement of cardiac biomarkers released into body fluids is critical for early detection, timely intervention, and improved patient outcomes.

View Article and Find Full Text PDF

IL12-based phototherapeutic nanoparticles through remodeling tumor-associated macrophages combined with immunogenic tumor cell death for synergistic cancer immunotherapy.

Biomater Sci

September 2025

Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, The Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, 300192, China.

Various cancer therapeutic strategies have been designed for targeting tumor-associated macrophages (TAMs), but TAM reprogramming-based monotherapy is often clinically hindered, likely due to the lack of a coordinated platform to initiate T cell-mediated immunity. Herein, we fabricated reactive oxygen species (ROS)-responsive human serum albumin (HSA)-based nanoparticles (PEG/IL12-IA NPs) consisting of indocyanine green (ICG), arginine (Arg), and interleukin 12 (IL12). Upon laser irradiation, the nanoparticles were found to be able to dissociate, thus facilitating the release of IL12.

View Article and Find Full Text PDF

Probiotics are live beneficial microorganisms that confer health benefits to the host when administered in adequate amounts, have gained considerable scientific and commercial interest for their ability to support gut health, strengthen immunity, and reduce disease risk. This review traces the genesis of probiotic science from its origins in traditional fermented foods to contemporary clinical applications, offering a conceptual understanding of its evolution. A clear distinction is drawn between endogenous probiotics, naturally resident in the human microbiome, and exogenous probiotics, introduced via dietary supplements and functional foods.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF