98%
921
2 minutes
20
Mixed findings exist in studies comparing brain responses to reward in adolescents and adults. Here we examined the trajectories of brain response, functional connectivity and task-modulated network properties during reward processing with a large-sample longitudinal design. Participants from the IMAGEN study performed a Monetary Incentive Delay task during fMRI at timepoint 1 (T1; n = 1304, mean age=14.44 years old) and timepoint 2 (T2; n = 1241, mean age=19.09 years). The Alcohol Use Disorders Identification Test (AUDIT) was administrated at both T1 and T2 to assess a participant's alcohol use during the past year. Voxel-wise linear mixed effect models were used to compare whole brain response as well as functional connectivity of the ventral striatum (VS) during reward anticipation (large reward vs no-reward cue) between T1 and T2. In addition, task-modulated networks were constructed using generalized psychophysiological interaction analysis and summarized with graph theory metrics. To explore alcohol use in relation to development, participants with no/low alcohol use at T1 but increased alcohol use to hazardous use level at T2 (i.e., participants with AUDIT≤2 at T1 and ≥8 at T2) were compared against those with consistently low scores (i.e., participants with AUDIT≤2 at T1 and ≤7 at T2). Across the whole sample, lower brain response during reward anticipation was observed at T2 compared with T1 in bilateral caudate nucleus, VS, thalamus, midbrain, dorsal anterior cingulate as well as left precentral and postcentral gyrus. Conversely, greater response was observed bilaterally in the inferior and middle frontal gyrus and right precentral and postcentral gyrus at T2 (vs. T1). Increased functional connectivity with VS was found in frontal, temporal, parietal and occipital regions at T2. Graph theory metrics of the task-modulated network showed higher inter-regional connectivity and topological efficiency at T2. Interactive effects between time (T1 vs. T2) and alcohol use group (low vs. high) on the functional connectivity were observed between left middle temporal gyrus and right VS and the characteristic shortest path length of the task-modulated networks. Collectively, these results demonstrate the utility of the MID task as a probe of typical brain response and network properties during development and of differences in these features related to adolescent drinking, a reward-related behaviour associated with heightened risk for future negative health outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8668439 | PMC |
http://dx.doi.org/10.1016/j.dcn.2021.101042 | DOI Listing |
Eur J Neurosci
September 2025
Experimental Psychology I, Institute of Psychology, Osnabrück University, Osnabrück, Germany.
Initial findings linking Virtual Reality (VR)-based encoding to increased recollection at retrieval remain inconclusive due to heterogeneous study designs and dependence on behavioral data. To clarify under which circumstances VR-based encoding affects or enhances episodic memory retrieval, the fundamental question remains whether the encoding modality, i.e.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China; Jiangsu Province Engineering Research Center of Green Pesticides, Yangzhou University, Yangzhou 225009, China. Electronic address:
The brown planthopper (BPH), Nilaparvata lugens is a typical pesticide-induced resurgent rice pest. A previous study showed that a fungicide, jinggangmycin (JGM)-treated rice led to markedly increased sugar content and (Insulin-like Peptide 2) ILP2 in response to sugar-mediated TOR signaling and stimulated fecundity in BPH. However, the role of the other ILPs in response to types of carbohydrate compounds remained poorly understood.
View Article and Find Full Text PDFMol Cell Neurosci
September 2025
Department of Personalized & Molecular Medicine, Era University, Lucknow, India.
Epilepsy is a neurological disorder that shows strong genetic control on the timing and onset of symptoms and drug response variability. Some epilepsy syndromes have clear monogenic mutations but genes with control on the phenotype and severity of the disorder and drug sensitivity are present in the whole genetic profile. Genetic modifiers are not the cause of epilepsy but control significant networks such as synaptic plasticity and ion channels and neurodevelopment and neuroinflammation and therefore the reason why two individuals with the same primary mutations have different clinical courses.
View Article and Find Full Text PDFImmunol Lett
September 2025
Department of Bacteriology and Immunology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HUS Diagnostic Center, Clinical Microbiology, Helsinki University Hospital, Helsinki,
Background: COVID-19 is still a significant health concern worldwide. B cell responses to COVID-19 have been extensively studied in acute severe disease, but less so during extended follow-up or mild disease. Persisting immunological changes together with herpesvirus reactivations during acute COVID-19 have been suggested as contributing factors for post-acute sequelae of COVID-19 (PASC).
View Article and Find Full Text PDFJ Neurosci Methods
September 2025
Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL, USA.
Background: Cortico-cortical evoked potentials (CCEPs), elicited via single-pulse electrical stimulation, are used to map brain networks. These responses comprise early (N1) and late (N2) components, which reflect direct and indirect cortical connectivity. Reliable identification of these components remains difficult due to substantial variability in amplitude, phase, and timing.
View Article and Find Full Text PDF