98%
921
2 minutes
20
The targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites. When combined with a site-specific serine recombinase, twinPE enabled targeted integration of gene-sized DNA plasmids (>5,000 bp) and targeted sequence inversions of 40 kb in human cells. TwinPE expands the capabilities of precision gene editing and might synergize with other tools for the correction or complementation of large or complex human pathogenic alleles.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117393 | PMC |
http://dx.doi.org/10.1038/s41587-021-01133-w | DOI Listing |
3 Biotech
October 2025
ICAR-National Rice Research Institute, Cuttack, Odisha 753006 India.
Just as Gregor Mendel's laws of inheritance laid the foundation for modern genetics, the emergence of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas systems has catalyzed a new era in precision genome engineering. CRISPR/Cas has revolutionized rice ( L.) breeding by enabling precise, transgene-free edits to improve yield, nutrition, and stress tolerance.
View Article and Find Full Text PDFNat Genet
September 2025
Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
Gene expression is modulated jointly by transcriptional regulation and messenger RNA stability, yet the latter is often overlooked in studies on genetic variants. Here, leveraging metabolic labeling data (Bru/BruChase-seq) and a new computational pipeline, RNAtracker, we categorize genes as allele-specific RNA stability (asRS) or allele-specific RNA transcription events. We identify more than 5,000 asRS variants among 665 genes across a panel of 11 human cell lines.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
As global climate change exacerbates extreme heat events, the interplay between heat stress and blast disease resistance in rice remains poorly understood. In this study, through integrated transcriptome profiling and systematic phenotyping of mutants in several thermosensory pathways, we identified HsfA1 as a positive regulator of heat priming-enhanced blast resistance in rice. Systematic analysis of microRNA (miRNA) dynamics, bioinformatics prediction, and RNA pull-down experiments revealed that , a temperature-responsive miRNA, directly suppresses the expression of by targeting the second exon of messenger RNA (mRNA).
View Article and Find Full Text PDFPLoS One
September 2025
University of Montpellier, CNRS, IRD, Academic Hospital (CHU) of Montpellier, MiVEGEC, Montpellier, France.
Parasites of the Leishmania donovani complex are responsible for visceral leishmaniasis, a vector-borne disease transmitted through the bite of female phlebotomine sand flies. As well as the human hosts, these parasites infect many mammals which can serve as reservoirs. Dogs are particularly important reservoirs.
View Article and Find Full Text PDF