The next-generation gene editing tool, prime editing (PE), is adept at correcting point mutations precisely with high editing efficiency and rare off-target events and shows promising therapeutic value in treating hereditary diseases. Retinitis pigmentosa (RP) is the most common type of inherited retinal dystrophy and is characterized by progressive degeneration of retinal photoreceptors and, consequently, visual decline. To date, effective treatments for RP are lacking.
View Article and Find Full Text PDFThe rare, accelerated aging disease Hutchinson-Gilford Progeria Syndrome (HGPS) is commonly caused by a c.1824 C > T point mutation of the gene that results in the protein progerin. The primary cause of death is a heart attack or stroke arising from atherosclerosis.
View Article and Find Full Text PDFMethods for the targeted integration of genes in mammalian genomes suffer from low programmability, low efficiencies or low specificities. Here we show that phage-assisted continuous evolution enhances prime-editing-assisted site-specific integrase gene editing (PASSIGE), which couples the programmability of prime editing with the ability of recombinases to precisely integrate large DNA cargoes exceeding 10 kilobases. Evolved and engineered Bxb1 recombinase variants (evoBxb1 and eeBxb1) mediated up to 60% donor integration (3.
View Article and Find Full Text PDFGene editing nucleases, base editors, and prime editors are potential locus-specific genetic treatment strategies for recessive dystrophic epidermolysis bullosa; however, many recessive dystrophic epidermolysis bullosa COL7A1 pathogenic nucleotide variations (PNVs) are unique, making the development of personalized editing reagents challenging. A total of 270 of the ∼320 COL7A1 epidermolysis bullosa PNVs reside in exons that can be skipped, and antisense oligonucleotides and gene editing nucleases have been used to create in-frame deletions. Antisense oligonucleotides are transient, and nucleases generate deleterious double-stranded DNA breaks and uncontrolled mixtures of allele products.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2023
Gene editing ushers in a new era of disease treatment since many genetic diseases are caused by base-pair mutations in genomic DNA. With the rapid development of genome editing technology, novel editing tools such as base editing and prime editing (PE) have attracted public attention, heralding a great leap forward in this field. PE, in particular, is characterized by no need for double-strand breaks (DSBs) or homology sequence templates with variable application scenarios, including point mutations as well as insertions or deletions.
View Article and Find Full Text PDFPrime editing enables a wide variety of precise genome edits in living cells. Here we use protein evolution and engineering to generate prime editors with reduced size and improved efficiency. Using phage-assisted evolution, we improved editing efficiencies of compact reverse transcriptases by up to 22-fold and generated prime editors that are 516-810 base pairs smaller than the current-generation editor PEmax.
View Article and Find Full Text PDFBase editors (BEs) have opened new avenues for the treatment of genetic diseases. However, advances in delivery approaches are needed to enable disease targeting of a broad range of tissues and cell types. Adeno-associated virus (AAV) vectors remain one of the most promising delivery vehicles for gene therapies.
View Article and Find Full Text PDFLeber congenital amaurosis (LCA) is the most common cause of inherited retinal degeneration in children. LCA patients with RPE65 mutations show accelerated cone photoreceptor dysfunction and death, resulting in early visual impairment. It is therefore crucial to develop a robust therapy that not only compensates for lost RPE65 function but also protects photoreceptors from further degeneration.
View Article and Find Full Text PDFThe targeted deletion, replacement, integration or inversion of genomic sequences could be used to study or treat human genetic diseases, but existing methods typically require double-strand DNA breaks (DSBs) that lead to undesired consequences, including uncontrolled indel mixtures and chromosomal abnormalities. Here we describe twin prime editing (twinPE), a DSB-independent method that uses a prime editor protein and two prime editing guide RNAs (pegRNAs) for the programmable replacement or excision of DNA sequences at endogenous human genomic sites. The two pegRNAs template the synthesis of complementary DNA flaps on opposing strands of genomic DNA, which replace the endogenous DNA sequence between the prime-editor-induced nick sites.
View Article and Find Full Text PDFAlthough changes in alternative splicing have been observed in cancer, their functional contributions still remain largely unclear. Here we report that splice isoforms of the cancer stem cell (CSC) marker CD44 exhibit strikingly opposite functions in breast cancer. Bioinformatic annotation in patient breast cancer in The Cancer Genome Atlas (TCGA) database reveals that the CD44 standard splice isoform (CD44s) positively associates with the CSC gene signatures, whereas the CD44 variant splice isoforms (CD44v) exhibit an inverse association.
View Article and Find Full Text PDFGenome organization and subnuclear protein localization are essential for normal cellular function and have been implicated in the control of gene expression, DNA replication, and genomic stability. The coupling of chromatin conformation capture (3C), chromatin immunoprecipitation and sequencing, and related techniques have continuously improved our understanding of genome architecture. To profile site-specifically DNA-associated proteins in a high-throughput and unbiased manner, the RNA-programmable CRISPR-Cas9 platform has recently been combined with an enzymatic labeling system to allow proteomic landscapes at repetitive and nonrepetitive loci to be defined with unprecedented ease and resolution.
View Article and Find Full Text PDFBackground: The development of CRISPR genome editing has transformed biomedical research. Most applications reported thus far rely upon the Cas9 protein from Streptococcus pyogenes SF370 (SpyCas9). With many RNA guides, wildtype SpyCas9 can induce significant levels of unintended mutations at near-cognate sites, necessitating substantial efforts toward the development of strategies to minimize off-target activity.
View Article and Find Full Text PDFIn their natural settings, CRISPR-Cas systems play crucial roles in bacterial and archaeal adaptive immunity to protect against phages and other mobile genetic elements, and they are also widely used as genome engineering technologies. Previously we discovered bacteriophage-encoded Cas9-specific anti-CRISPR (Acr) proteins that serve as countermeasures against host bacterial immunity by inactivating their CRISPR-Cas systems (A. Pawluk, N.
View Article and Find Full Text PDFThe epithelial-mesenchymal transition (EMT) is a fundamental developmental process that is abnormally activated in cancer metastasis. Dynamic changes in alternative splicing occur during EMT. ESRP1 and hnRNPM are splicing regulators that promote an epithelial splicing program and a mesenchymal splicing program, respectively.
View Article and Find Full Text PDFNat Methods
June 2018
Mapping proteomic composition at distinct genomic loci in living cells has been a long-standing challenge. Here we report that dCas9-APEX2 biotinylation at genomic elements by restricted spatial tagging (C-BERST) allows the rapid, unbiased mapping of proteomes near defined genomic loci, as demonstrated for telomeres and centromeres. C-BERST enables the high-throughput identification of proteins associated with specific sequences, thereby facilitating annotation of these factors and their roles.
View Article and Find Full Text PDFTumor metastasis remains the major cause of cancer-related death, but its molecular basis is still not well understood. Here we uncovered a splicing-mediated pathway that is essential for breast cancer metastasis. We show that the RNA-binding protein heterogeneous nuclear ribonucleoprotein M (hnRNPM) promotes breast cancer metastasis by activating the switch of alternative splicing that occurs during epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDF