98%
921
2 minutes
20
Iron is an essential nutriment for almost all organisms, but this metal is poorly bioavailable. During infection, bacteria access iron from the host by importing either iron or heme. , a gram-negative pathogen, secretes two siderophores, pyoverdine (PVD) and pyochelin (PCH), to access iron and is also able to use many siderophores produced by other microorganisms (called xenosiderophores). To access heme, uses three distinct uptake pathways, named Has, Phu, and Hxu. We previously showed that expresses the Has and Phu heme uptake systems and the PVD- and PCH-dependent iron uptake pathways in iron-restricted growth conditions, using proteomic and RT-qPCR approaches. Here, using the same approaches, we show that physiological concentrations of hemin in the bacterial growth medium result in the repression of the expression of the proteins of the PVD- and PCH-dependent iron uptake pathways, leading to less production of these two siderophores. This indicates that the pathogen adapts its phenotype to use hemin as an iron source rather than produce PVD and PCH to access iron. Moreover, the presence of both hemin and a xenosiderophore resulted in (i) the strong induction of the expression of the proteins of the added xenosiderophore uptake pathway, (ii) repression of the PVD- and PCH-dependent iron uptake pathways, and (iii) no effect on the expression levels of the Has, Phu, or Hxu systems, indicating that bacteria use both xenosiderophores and heme to access iron.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsinfecdis.1c00525 | DOI Listing |
Exp Ther Med
November 2025
Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu 226007, P.R. China.
Gestational diabetes mellitus (GDM), a type of diabetes mellitus occurring in pregnant women, increases the risk of birth trauma. Solute carrier family 2 member 4 (SLC2A4) polymorphism is notably associated with GDM susceptibility; however, the mechanism is unknown. In the present study, HTR-8/SVneo cells were treated with high glucose concentrations and transfected with SLC2A4 and Forkhead box O (FoxO)1 to investigate their roles in the insulin (INS) resistance of GDM trophoblast cells.
View Article and Find Full Text PDFMater Today Bio
October 2025
School of Pharmacy, Henan Medical University, Xinxiang, Henan, China.
Breast cancer continues to present a major clinical hurdle, largely attributable to its aggressive metastatic behavior and the suboptimal efficacy of standard chemotherapeutic regimens. Cisplatin (CDDP) is a representative platinum drug in the treatment of breast cancer, however, its therapeutic application is often constrained by systemic toxicity and the frequent onset of chemoresistance. Here, we introduce a novel charge-adaptive nanoprodrug system, referred to as PP@, engineered to respond to tumor-specific conditions.
View Article and Find Full Text PDFFEBS Lett
September 2025
Kusuma School of Biological Sciences, Indian Institute of Technology-Delhi, Hauz Khas, New Delhi, India.
Neuronal insulin signaling is essential for regulating glucose metabolism and cognitive functions in the brain. Disruptions cause neuronal insulin resistance, potentially causing type 2 diabetes (T2D) and Alzheimer's disease (AD). Therefore, we investigated alternative pathways that maintain glucose homeostasis beyond traditional insulin signaling.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.
Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
The Steve Sanghi College of Engineering, Mechanical Engineering, Northern Arizona University, Flagstaff, Arizona 86011, United States.
This study investigates the HO and CO sorption behavior of two chemically distinct polystyrene-divinylbenzene-based ion exchange sorbents: a primary amine and a permanently charged strong base quaternary ammonium (QA) group with (bi)carbonate counter anions. We compare their distinct interactions with HO and CO through simultaneous thermal gravimetric, calorimetric, gas analysis, and molecular modeling approaches to evaluate their performance for dilute CO separations like direct air capture. Thermal and hybrid (heat + low-temperature hydration) desorption experiments demonstrate that the QA-based sorbent binds both water and CO more strongly than the amine counterparts but undergoes degradation at moderate temperatures, limiting its compatibility with thermal swing regeneration.
View Article and Find Full Text PDF