98%
921
2 minutes
20
Veterinary antibiotics are intensively and widely used in animal farming to treat or prevent diseases, as well as improve growth rate and feed efficiency. Animal manure is an important reservoir of veterinary antibiotics due to their high excretion rates, and thus manure application has been a critical source of veterinary antibiotics in agro-ecosystems. However, how veterinary antibiotics affect agroecosystem functions is still unclearly understood. In this study, we evaluated the effects of veterinary antibiotics on soil bacteria and earthworms in agricultural land with long-term manure application. The potential mechanisms of antibiotic-induced changes in crop yields were also revealed. The results showed that the increasing prevalence of veterinary antibiotics in agro-ecosystems inhibited earthworm abundance and bacterial diversity, and then decreased the bioavailability of soil nutrients. Furthermore, high-dose exposure to veterinary antibiotics improved the abundance of plant pathogenic bacteria. Analysis indicated that veterinary antibiotics played an important underlying role in driving the negative effects on peanut grain yields via disturbing microbe- and earthworm-mediated soil available nutrient contents. The direct toxicity effects of antibiotics on peanut relative yields were stronger than their indirect mediating effects. Additionally, the tradeoffs between antibiotics and agroecosystem functions increased at low exposure levels and then decreased at high exposure levels, which indicated the effects of antibiotics on agroecosystem functions were dose-dependent, except for earthworm biomass. Antibiotic contamination which will impose threats to agricultural sustainability was highlighted and should be paid more attention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.152056 | DOI Listing |
Vet World
July 2025
Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand.
Background And Aim: The global shift toward antibiotic-free poultry production necessitates sustainable alternatives to conventional growth promoters. Hydrolyzable tannins (HTs) from plants have shown antimicrobial, antioxidant, and gut-modulatory effects, making them promising feed additives. However, reliance on imported tannins from temperate species limits access for tropical producers, especially in Thailand.
View Article and Find Full Text PDFVet World
July 2025
Division of Surgery, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen 40002, Thailand.
Background And Aim: Antibiotic resistance poses a growing threat to wound management in veterinary medicine. Blue light phototherapy has emerged as a non-antibiotic bactericidal alternative with additional benefits for wound healing. However, its effectiveness in clinical veterinary contexts remains inadequately explored.
View Article and Find Full Text PDFVet World
July 2025
Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt.
Background And Aim: is a multidrug-resistant (MDR) zoonotic pathogen increasingly implicated in infections in both humans and animals, including avian species. Raptors, particularly peregrine falcons, are vulnerable due to their exposure to diverse environments and intensive management practices. This study aimed to identify isolates from peregrine falcons in Saudi Arabia and to characterize their genomic features, phylogenetic relationships, and antimicrobial resistance (AMR) profiles using whole-genome sequencing (WGS).
View Article and Find Full Text PDFVet World
July 2025
Faculty of Veterinary Medicine, Universitas Brawijaya, Malang, East Java 65151, Indonesia.
Background And Aim: is a significant pathogen in freshwater aquaculture, contributing to high morbidity and mortality in common carp (). Conventional reliance on antibiotics raises concerns about resistance and environmental impact. This study aimed to evaluate the effects of short-term fasting (1 or 2 days) on physiological, oxidative stress, and microbial responses in infected with .
View Article and Find Full Text PDFVet World
July 2025
Research Center for Veterinary Science, National Research and Innovation Agency, Jl. Raya Bogor Km. 46 Cibinong, Bogor, 16911, West Java, Indonesia.
Streptococcosis, caused by , is a significant disease in tilapia farming that results in substantial economic losses. While vaccination is the most effective method for prevention, current vaccines face challenges when administered orally or through immersion, primarily due to poor absorption and degradation in the fish's digestive system. Nanotechnology offers new ways to improve vaccine delivery and effectiveness.
View Article and Find Full Text PDF