98%
921
2 minutes
20
Phosphatidic acid (PA) is an important lipid essential for several aspects of plant development and biotic and abiotic stress responses. We previously suggested that submergence induces PA accumulation in Arabidopsis thaliana; however, the molecular mechanism underlying PA-mediated regulation of submergence-induced hypoxia signaling remains unknown. Here, we showed that in Arabidopsis, loss of the phospholipase D (PLD) proteins PLDα1 and PLDδ leads to hypersensitivity to hypoxia, but increased tolerance to submergence. This enhanced tolerance is likely due to improvement of PA-mediated membrane integrity. PA bound to the mitogen-activated protein kinase 3 (MPK3) and MPK6 in vitro and contributed to hypoxia-induced phosphorylation of MPK3 and MPK6 in vivo. Moreover, mpk3 and mpk6 mutants were more sensitive to hypoxia and submergence stress compared with wild type, and fully suppressed the submergence-tolerant phenotypes of pldα1 and pldδ mutants. MPK3 and MPK6 interacted with and phosphorylated RELATED TO AP2.12, a master transcription factor in the hypoxia signaling pathway, and modulated its activity. In addition, MPK3 and MPK6 formed a regulatory feedback loop with PLDα1 and/or PLDδ to regulate PLD stability and submergence-induced PA production. Thus, our findings demonstrate that PA modulates plant tolerance to submergence via both membrane integrity and MPK3/6-mediated hypoxia signaling in Arabidopsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8824597 | PMC |
http://dx.doi.org/10.1093/plcell/koab289 | DOI Listing |
Plant Physiol Biochem
July 2025
College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China. Electronic address:
Redroot pigweed (Amaranthus retroflexus L.) is one of the common weeds in alfalfa (Medicago sativa L.) field, compromising yield and forage quality.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2025
Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea. Electronic address:
Environmental stress caused by biotic and abiotic factors negatively affects crop quality and productivity. Plants employ multiple signaling mechanisms under stress, with the mitogen-activated protein kinase (MAPK) cascade-particularly MPK3 and MPK6-serving as a central regulator of stress adaptation through substrate phosphorylation. While these kinases are well-studied in model plants, their functional role in sweet potato [Ipomoea batatas (L.
View Article and Find Full Text PDFDev Cell
August 2025
State Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
In plants, stomata on the aerial epidermis play critical roles in various biological processes, including gas exchange, photosynthesis, transpiration, and immunity. Stomatal development is negatively and positively controlled by the mitogen-activated protein kinase (MAPK) cascade and nitric oxide (NO), respectively. However, the regulatory scheme of stomatal development by these signaling pathways remains elusive.
View Article and Find Full Text PDFInt J Mol Sci
February 2025
The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China.
The balance between plant growth and stress response is a key issue in the field of biology. In this process, mitogen-activated protein kinase 3 (MPK3) and MPK6 contribute to the construction of plants' defense system during stress tolerance, while auxin, a growth-promoting hormone, is the key to maintaining plant growth. Nevertheless, the antagonistic or cooperative relationship between MPK3/6-mediated stress response and auxin-mediated plant growth remains unclear.
View Article and Find Full Text PDFPlant Physiol
December 2024
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Two mitogen-activated protein kinase (MAPK) cascades with MPK4 and MPK3/MPK6 as the bottommost kinases are key to plant growth/development and immune signaling. Disruption of the MPK4 cascade leads to severe dwarfism and autoimmunity, complicating the study of MPK4 in plant growth/development and immunity. In this study, we successfully rescued the Arabidopsis (Arabidopsis thaliana) mpk4 mutant using a chemical-sensitized MPK4 variant, MPK4YG, creating a conditional activity-null mpk4 mutant named MPK4SR (genotype: PMPK4:MPK4YG mpk4) that could be used to examine the functions of MPK4 in plant growth/development and immunity.
View Article and Find Full Text PDF