98%
921
2 minutes
20
While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs. Here, we report anomalous circularly polarized photoluminescence (CPL) in a V-doped WSe monolayer at room temperature. Excitons couple to V-induced spin-polarized holes to generate spin-selective positive trions, leading to differences in the populations of neutral excitons and trions between left and right CPL. Using transient absorption spectroscopy, we elucidate the origin of excitons and trions that are inherently distinct for defect-mediated and impurity-mediated trions. Ferromagnetic characteristics are further confirmed by the significant Zeeman splitting of nanodiamonds deposited on the V-doped WSe monolayer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.1c08375 | DOI Listing |
ACS Appl Mater Interfaces
January 2024
Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W Campbell Rd., Richardson, Texas 75080, United States.
Using Hubbard-U-corrected density functional theory calculations, lattice Monte Carlo simulations, and spin Monte Carlo simulations, we investigate the impact of dopant clustering on the magnetic properties of WSe doped with period four transition metals. We use manganese (Mn) and iron (Fe) as candidate n-type dopants and vanadium (V) as the candidate p-type dopant, substituting the tungsten (W) atom in WSe. Specifically, we determine the strength of the exchange interaction in Fe-, Mn-, and V-doped WSe in the presence of clustering.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2024
Department of Physics, University of South Florida, Tampa, FL, 33620, USA.
The capacity to manipulate magnetization in 2D dilute magnetic semiconductors (2D-DMSs) using light, specifically in magnetically doped transition metal dichalcogenide (TMD) monolayers (M-doped TX , where M = V, Fe, and Cr; T = W, Mo; X = S, Se, and Te), may lead to innovative applications in spintronics, spin-caloritronics, valleytronics, and quantum computation. This Perspective paper explores the mediation of magnetization by light under ambient conditions in 2D-TMD DMSs and heterostructures. By combining magneto-LC resonance (MLCR) experiments with density functional theory (DFT) calculations, we show that the magnetization can be enhanced using light in V-doped TMD monolayers (e.
View Article and Find Full Text PDFACS Nano
August 2022
Department of Nano and Advanced Materials, Jeonju University, Chonju, Chonbuk 55069, Republic of Korea.
Tuning the electronic structures of transition metal dichalcogenides (TMD) is essential for their implementation in next-generation energy technologies. In this study, we synthesized composition-tuned WSe-VSe (WVSe, = 0-1) alloyed nanosheets using a colloidal reaction. Alloying the semiconducting WSe with VSe converts the material into a metallic one, followed by a 2H-to-1T phase transition at = 0.
View Article and Find Full Text PDFACS Nano
December 2021
Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon 16419, Republic of Korea.
While valley polarization with strong Zeeman splitting is the most prominent characteristic of two-dimensional (2D) transition metal dichalcogenide (TMD) semiconductors under magnetic fields, enhancement of the Zeeman splitting has been demonstrated by incorporating magnetic dopants into the host materials. Unlike Fe, Mn, and Co, V is a distinctive dopant for ferromagnetic semiconducting properties at room temperature with large Zeeman shifting of band edges. Nevertheless, little known is the excitons interacting with spin-polarized carriers in V-doped TMDs.
View Article and Find Full Text PDFAdv Sci (Weinh)
June 2021
International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, 305-0044, Japan.
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) with unique electrical properties are fascinating materials used for future electronics. However, the strong Fermi level pinning effect at the interface of TMDCs and metal electrodes always leads to high contact resistance, which seriously hinders their application in 2D electronics. One effective way to overcome this is to use metallic TMDCs or transferred metal electrodes as van der Waals (vdW) contacts.
View Article and Find Full Text PDF