Rubisco catalytic adaptation is mostly driven by photosynthetic conditions - Not by phylogenetic constraints.

J Plant Physiol

Research School of Biology, ANU College of Science, Australian National University, 2601, Canberra ACT, Australia.

Published: December 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The prevalence of phylogenetic constraints in Rubisco evolution has been emphasised recently by (Bouvier et al., 2021), who argued that phylogenetic inheritance limits Rubisco adaptation much more than the biochemical trade-off between specificity, CO affinity and turn-over. In this Opinion, we have critically examined how a phylogenetic signal can be computed with Rubisco kinetic properties and phylogenetic trees, and we arrive at a different conclusion. In particular, Rubisco's adaptation is partly driven by C vs. C photosynthetic conditions in Angiosperms, apparent phylogenetic signals being mostly due to either homoplasy, computation artefacts or the use of nearly identical sister species. While phylogenetic inheritance of an ancestral enzyme form probably has some role in Rubisco's adaptation landscape, it is a minor player, at least compared to microenvironmental conditions such as CO and O concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jplph.2021.153554DOI Listing

Publication Analysis

Top Keywords

driven photosynthetic
8
photosynthetic conditions
8
phylogenetic constraints
8
phylogenetic inheritance
8
rubisco's adaptation
8
phylogenetic
7
rubisco
4
rubisco catalytic
4
adaptation
4
catalytic adaptation
4

Similar Publications

Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.

View Article and Find Full Text PDF

Photosynthetic organisms have evolved diverse strategies to adapt to fluctuating light conditions, balancing efficient light capture with photoprotection. In green algae and land plants, this involves specialized light-harvesting complexes (LHCs), non-photochemical quenching, and state transitions driven by dynamic remodeling of antenna proteins associated with Photosystems (PS) I and II. Euglena gracilis, a flagellate with a secondary green plastid, represents a distantly related lineage whose light-harvesting regulation remains poorly understood.

View Article and Find Full Text PDF

Camellia chekiangoleosa is a significant oil-bearing tree species, known for its high oleic acid content and shorter reproductive cycle compared to traditional oil-tea plants. However, there are few studies on the molecular mechanism and compatibility of the interaction between oil-Camellia scion and rootstock, which poses certain challenges to the cultivation and promotion of oil-Camellia. This study systematically evaluates the effects of hetero-grafting Camellia chekiangoleosa scions onto divergent rootstocks (Camellia chekiangoleosa, Camellia oleifera, and Camellia yuhsienensis).

View Article and Find Full Text PDF

Increased snowpack enhances ecological functions of cold-region constructed wetlands via plant-microbe interactions.

Water Res

August 2025

Key Laboratory of SFGA (SPA) on Conservation Ecology in the Northeast Tiger and Leopard National park & Jilin Provincial Key Laboratory of Wetland Ecological Functions and Ecological Security, College of Geography and Ocean Sciences, Yanbian University, Yanji, 133300, China.

Snowpack variations in cold regions exert profound influences on the ecological functioning of constructed wetlands (CWs), particularly with respect to GHG emissions and nutrient removal. However, the underlying mechanisms have yet to be clarified. This study established pilot-scale vertical subsurface flow CWs in Northeast China, with Phragmites australis and Iris sibirica, and applied doubled snowpack (DS) and natural snow cover (CK) during winter.

View Article and Find Full Text PDF

Leaf anatomical structure of dominant shrubs and their influencing factors across habitats in hyper-arid region.

Ying Yong Sheng Tai Xue Bao

August 2025

State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Reserves, Beijing Forestry University, Beijing 100083, China.

We analyzed the drought adaptation mechanism of shrub species in three typical habitats (oasis, transition zone, and desert) of the extremely arid area in the lower reaches of the Heihe River, with 15 species as the objects. Using paraffin sectioning technology combined with microscopic observation, we measured 14 anatomical traits, including leaf epidermal thickness, total leaf thickness, palisade tissue thickness, spongy tissue thickness, and main vein vascular bundle thickness, etc. The results showed that leaf thickness, palisade tissue thickness, and leaf structure compactness (palisade tissue thickness/total leaf thickness) significantly varied among different habitats, and increased with the aggravation of drought degree.

View Article and Find Full Text PDF