Systematic Profiling of Exosomal Small RNA Epigenetic Modifications by High-Performance Liquid Chromatography-Mass Spectrometry.

Anal Chem

Beijing National Laboratory for Molecular Sciences (BNLMS), MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Exosomes are nanosized extracellular vesicles that have a critical role in intercellular communication and tumor microenvironment regulation. Extensive research has shown that exosomal small RNAs contribute to metastasis in multiple tumor types and that abnormal epigenetic modifications in nucleic acids also have an association with diverse diseases. However, the content of modified nucleosides on exosomal small RNAs has not been quantitatively reported. Because of the trace amounts of exosomes and matrix complexity, we used liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a powerful tool for label-free sensitive and simultaneous determinations of six important modified nucleosides on small RNAs inside exosomes. This system performed well using only approximately 10-10 particles of exosomes to obtain modified nucleoside levels between 0.001 and 0.03, and the most striking result was that the content of mA in exosomal small RNAs was continuously higher than that in the cells being analyzed. We hope that this conclusion helps establish a greater degree of deciphering accuracy on exosomes, which has considerable application potential in the diagnosis and prognosis of diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c03869DOI Listing

Publication Analysis

Top Keywords

exosomal small
16
small rnas
16
epigenetic modifications
8
modified nucleosides
8
small
5
exosomes
5
systematic profiling
4
exosomal
4
profiling exosomal
4
small rna
4

Similar Publications

Identification of poor prognostic factors using circulating extracellular vesicles in durvalumab consolidation therapy for locally advanced non-small cell lung cancer.

Lung Cancer

September 2025

Division of Respiratory Diseases, Department of Internal Medicine, The Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi, Minato-ku, Tokyo, Japan; Division of Next-Generation Drug Development Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 3-25-8 Ni

Background: The risk factors associated with treatment resistance to consolidation durvalumab following chemoradiotherapy (CRT) for locally advanced non-small cell lung cancer (NSCLC) have not been well established.

Methods: Extracellular vesicles (EVs) were isolated from the pretreatment serum of 73 patients treated with consolidation durvalumab. Isolation was performed using CD9/CD63 antibodies, and EV proteins were identified using liquid chromatography-tandem mass spectrometry (LC-MS).

View Article and Find Full Text PDF

Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is a major global health issue, ranking as the sixth most common cancer and a leading cause of cancer-related deaths worldwide. Risk factors for HCC include chronic hepatitis B and C, obesity, alcohol abuse, diabetes, and metabolic disorders. Current treatments, such as surgery, transplantation, and chemotherapy, are often ineffective in advanced stages due to tumor resistance and the inability to target key oncogenic pathways.

View Article and Find Full Text PDF

Adipose-derived mesenchymal stem cells (ADMSCs) offer a multifaceted approach to treating immune-mediated skin diseases by modulating the immune system and promoting tissue regeneration. Specifically, their ability to differentiate into multiple cell types such as keratinocytes and fibroblasts, modulate immune responses, and release growth factors and cytokines underscores their potential in treating a wide range of immune-related skin conditions. ADMSCs significantly reduced various aspects of psoriasis, including scaling, thickness, and erythema.

View Article and Find Full Text PDF

Umbilical cord blood-derived exosomes deliver miR-182-5p to Therapeutically target the MYD88/NF-κB signaling pathway in rat peri-implantitis.

Mater Today Bio

October 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.

Peri-implantitis (PI) is a major cause of implant restoration failure, necessitating therapeutic strategies that integrate bone regeneration and anti-inflammatory effects. Despite advances in treatment, no existing agents simultaneously address both objectives. Exosomes (Exos), as key mediators of intercellular communication, have demonstrated dual anti-inflammatory and osteogenic capacities through microRNA (miRNA) delivery; however, their potential in PI therapy remains unexplored.

View Article and Find Full Text PDF