98%
921
2 minutes
20
Analysis of the transcriptional profiles of developing thymocytes has shown that T lineage commitment is associated with loss of stem cell and early progenitor gene signatures and the acquisition of T cell gene signatures. Less well understood are the epigenetic alterations that accompany or enable these transcriptional changes. Here, we show that the histone demethylase Lsd1 (Kdm1a) performs a key role in extinguishing stem/progenitor transcriptional programs in addition to key repressive gene programs during thymocyte maturation. Deletion of Lsd1 caused a block in late T cell development and resulted in overexpression of interferon response genes as well as genes regulated by the Gfi1, Bcl6, and, most prominently, Bcl11b transcriptional repressors in CD4+CD8+ thymocytes. Transcriptional overexpression in Lsd1-deficient thymocytes was not always associated with increased H3K4 trimethylation at gene promoters, indicating that Lsd1 indirectly affects the expression of many genes. Together, these results identify a critical function for Lsd1 in the epigenetic regulation of multiple repressive gene signatures during T cell development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8570297 | PMC |
http://dx.doi.org/10.1084/jem.20202012 | DOI Listing |
Elife
September 2025
Human Biology and Primate Evolution, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
Evidence indicates that transposable elements (TEs) can contribute to the evolution of new traits, with some TEs acting as deleterious elements while others are repurposed for beneficial roles in evolution. In mammals, some KRAB-ZNF proteins can serve as a key defense mechanism to repress TEs, offering genomic protection. Notably, the family of KRAB-ZNF genes evolves rapidly and exhibits diverse expression patterns in primate brains, where some TEs, including autonomous LINE-1 and non-autonomous Alu and SVA elements, remain mobile.
View Article and Find Full Text PDFACS Synth Biol
September 2025
School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85281, United States.
Cellular resource limitations create unintended interactions among synthetic gene circuit modules, compromising circuit modularity. This challenge is particularly pronounced in circuits with positive feedback, where uneven resource allocation can lead to Winner-Takes-All (WTA) behavior, favoring one module at the expense of others. In this study, we experimentally implemented a Negatively Competitive Regulatory (NCR) controller using CRISPR interference (CRISPRi) and evaluated its effectiveness in mitigating WTA behavior in two gene circuits: dual self-activation and cascading bistable switch.
View Article and Find Full Text PDFJ Appl Toxicol
September 2025
School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, China.
Polystyrene nanoparticles (PS-NPs) are prevalent environmental contaminants that can accumulate in biological tissues. This study investigates the effects of PS-NPs on TM4 cells, a Sertoli cell line crucial for maintaining the male spermatogenesis microenvironment.TM4 cells were exposed to PS-NPs (0-100 μg/mL) duration of 24 to 72 h.
View Article and Find Full Text PDFBr J Cancer
September 2025
Institute of Life Sciences, Bhubaneswar, Odisha, India.
Background: Docetaxel is the most common chemotherapy regimen for several neoplasms, including advanced OSCC (Oral Squamous Cell Carcinoma). Unfortunately, chemoresistance leads to relapse and adverse disease outcomes.
Methods: We performed CRISPR-based kinome screening to identify potential players of Docetaxel resistance.
Biochem Pharmacol
September 2025
Department of Biosciences, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal 700109, India. Electronic address:
The malignant manifestation of breast cancer is driven by complex molecular alterations that extend beyond genetic mutations to include epigenetic dysregulation. Among these, DNA methylation is a critical and reversible epigenetic modification that significantly influences breast cancer initiation, progression, and therapeutic resistance. This process, mediated by DNA methyltransferases (DNMTs), involves the addition of methyl groups to cytosine residues within CpG dinucleotides, resulting in transcriptional repression of genes.
View Article and Find Full Text PDF