98%
921
2 minutes
20
Extracelluar matrix (ECM) proteins create complex networks of macromolecules which fill-in the extracellular spaces of living tissues. They provide structural support and play an important role in maintaining cellular functions. Identification of ECM proteins can play a vital role in studying various types of diseases. Conventional wet lab-based methods are reliable; however, they are expensive and time consuming and are, therefore, not scalable. In this research, we propose a sequence-based novel machine learning approach for the prediction of ECM proteins. In the proposed method, composition of k-spaced amino acid pair (CKSAAP) features are encoded into a classifiable latent space (LS) with the help of deep latent space encoding (LSE). A comprehensive ablation analysis is conducted for performance evaluation of the proposed method. Results are compared with other state-of-the-art methods on the benchmark dataset, and the proposed ECM-LSE approach has shown to comprehensively outperform the contemporary methods.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8552119 | PMC |
http://dx.doi.org/10.3389/fbioe.2021.752658 | DOI Listing |
IEEE Trans Neural Syst Rehabil Eng
September 2025
Recognizing hand gestures from surface electromyography (sEMG) signals is crucial for neural interfaces and human-machine interaction. However, developing subject-generic models remains challenging due to substantial inter-subject variability. Complicating matters further, the muscle groups driving gestures with varying degrees of freedom (DoFs) often overlap, producing highly convoluted feature distributions across subjects and DoFs.
View Article and Find Full Text PDFDevelopment
September 2025
Department of Molecular & Cell Biology, University of California, Berkeley, CA 94720, USA.
Organ initiation is often driven by extracellular signaling molecules that activate precursor cells competent to receive and respond to a given signal, yet little is known about the dynamics of competency in space and time during development. Teeth are excellent organs to study cellular competency because they can be activated with the addition of a single signaling ligand, Ectodysplasin (Eda). To investigate the role of Eda in tooth specification, we generated transgenic sticklebacks and zebrafish with heat shock-inducible Eda overexpression.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2025
This article proposes a novel model-based planning framework for freeway ramp metering (RM), denoted as Koopman-driven linearized model-based offline planning (KLMOP). This framework integrates the model predictive control (MPC) and offline reinforcement learning (RL) under assumptions of a linear Markov decision process (MDP) with the Koopman operator. KLMOP introduces a fully linearized control framework by learning and modeling the dynamics, reward function, and value function in a latent space through a Koopman-based latent dynamical model (KLDM) and a pessimistic value iteration (PEVI) algorithm.
View Article and Find Full Text PDFFront Digit Health
August 2025
Architecture Laboratory, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Japan.
Background: Microwave Doppler sensors, capable of detecting minute physiological movements, enable the measurement of biometric information, such as walking patterns, heart rate, and respiration. Unlike fingerprint and facial recognition systems, they offer authentication without physical contact or privacy concerns. This study focuses on non-contact seismocardiography using microwave Doppler sensors and aims to apply this technology for biometric authentication.
View Article and Find Full Text PDFImaging Neurosci (Camb)
September 2025
Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States.
Spatial similarity of functional connectivity profiles across matching anatomical locations in individuals is often calculated to delineate individual differences in functional networks. Likewise, spatial similarity is assessed across average functional connectivity profiles of groups to evaluate the maturity of functional networks during development. Despite its widespread use, spatial similarity is limited to comparing two samples at a time.
View Article and Find Full Text PDF