Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mechanistically driven therapies for atrial fibrillation (AF), the most common cardiac arrhythmia, are urgently needed, the development of which requires improved understanding of the cellular signaling pathways that facilitate the structural and electrophysiological remodeling that occurs in the atria. Similar to humans, increased persistent Na+ current leads to the development of an atrial myopathy and spontaneous and long-lasting episodes of AF in mice. How increased persistent Na+ current causes both structural and electrophysiological remodeling in the atria is unknown. We crossbred mice expressing human F1759A-NaV1.5 channels with mice expressing human mitochondrial catalase (mCAT). Increased expression of mCAT attenuated mitochondrial and cellular reactive oxygen species (ROS) and the structural remodeling that was induced by persistent F1759A-Na+ current. Despite the heterogeneously prolonged atrial action potential, which was unaffected by the reduction in ROS, the incidences of spontaneous AF, pacing-induced after-depolarizations, and AF were substantially reduced. Expression of mCAT markedly reduced persistent Na+ current-induced ryanodine receptor oxidation and dysfunction. In summary, increased persistent Na+ current in atrial cardiomyocytes, which is observed in patients with AF, induced atrial enlargement, fibrosis, mitochondrial dysmorphology, early after-depolarizations, and AF, all of which can be attenuated by resolving mitochondrial oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675199PMC
http://dx.doi.org/10.1172/jci.insight.147371DOI Listing

Publication Analysis

Top Keywords

persistent na+
16
increased persistent
12
na+ current
12
atrial myopathy
8
mitochondrial oxidative
8
oxidative stress
8
structural electrophysiological
8
electrophysiological remodeling
8
mice expressing
8
expressing human
8

Similar Publications

Novel loss-of-function mutations in VPS13A cause chorea-acanthocytosis in two families.

Front Neurol

August 2025

Department of Rehabilitation Medicine, The First Affiliated Hospital, Fujian Medical University; National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.

Introduction: Chorea-acanthocytosis (ChAc) is the most common subtype of neuroacanthocytosis (NA) caused by mutations in VPS13A (vacuole protein sorting-associated protein 13A). ChAc is characterized by the presence of spherocytes and neurological symptoms. This article reports two families with ChAc and summarizes some suggestive characteristics, providing an effective basis for clinicians to screen ChAc in the early stage and effectively reduce the misdiagnosis and missed diagnosis of this disease.

View Article and Find Full Text PDF

Gestational inoculation by the Zika virus causes cognitive impairment and NaK-ATPase activity imbalance in frontal cortex of adult male and female Wistar rat's offspring.

Brain Res

September 2025

Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil; Departamento de Ciências Morfológicas, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre,

It has been recently described the Congenital Zika Syndrome (CZS). Children from pregnant women who were infected by the virus have expressed a set of symptoms, particularly involving neurological disorders such as microcephaly. Animal models have been conducted aiming to enhance the knowledge about the CZS and giving support for future studies proposing prevention and treatment for this condition.

View Article and Find Full Text PDF

Atomic armor for thermal stability in nanoporous structures.

Proc Natl Acad Sci U S A

September 2025

School of Chemistry and Physics, Australian Research Council Research Hub in Zero-emission Power Generation for Carbon Neutrality, and Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4000, Australia.

Nanoporous structures play a critical role in a wide range of applications, including catalysis, thermoelectrics, energy storage, gas adsorption, and thermal insulation. However, their thermal instability remains a persistent challenge. Inspired by the extraordinary resilience of tardigrades, an "atomic armor" strategy is introduced to enhance the stability of nanoporous structures.

View Article and Find Full Text PDF

The Role of MRI in Debunking the Fallacy of "Mild" Traumatic Brain Injury.

J Magn Reson Imaging

September 2025

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.

Mild traumatic brain injury (mTBI) is a prevalent yet often overlooked public health concern due to the absence of detectable abnormalities on CT or conventional MRI scans. Approximately 18.3%-31.

View Article and Find Full Text PDF

Sn-Mediated Trap Engineering in Cr-Activated Titanate Nanophosphors Enables Self-Sustained Multimodal Imaging and Combinatorial Oncotherapy.

Adv Mater

September 2025

National and Local Joint Engineering Laboratory for Optical Conversion Materials and Technology of National Development and Reform Commission, Department of Materials Science, School of Materials and Energy, Lanzhou University, No. 222, South Tianshui Road, Lanzhou, Gansu, 730000, P. R. China.

Multimodal imaging provides comprehensive and precise tools that significantly increase the efficiency and accuracy in clinical decision-making. The integration of superior multimodal imaging capabilities with stimuli-responsive drug release functionalities within a single nanoplatform holds crucial promise for both scientific exploration and clinical translation but remains a formidable challenge in advancing precision medicine. The unique integration of near-infrared emission (λ = 760 nm), multiwavelength-rechargeable afterglow, photostimulated luminescence under 980 nm excitation, and Gd⁺-specific ferromagnetism is highlighted in NaGdTiO:Cr,Sn phosphor.

View Article and Find Full Text PDF