Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Introduction: The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function.

Areas Covered: This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included.

Expert Opinion: Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601199PMC
http://dx.doi.org/10.1080/17425247.2021.1988925DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
hyaluronic acid
8
peptide nanocarriers
8
therapeutic nanocarriers
4
nanocarriers comprising
4
comprising extracellular
4
extracellular matrix-inspired
4
matrix-inspired peptides
4
peptides polysaccharides
4
polysaccharides introduction
4

Similar Publications

Proteomics Uncovers Enrichment Bias of Common Extracellular Vesicle Isolation Methods in HEK293T Cells.

J Proteome Res

September 2025

School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province 330031, China.

Extracellular vesicles (EVs) are membranous structures consisting of lipid bilayers that are released by most cell types and serve as important mediators of intercellular communication. The HEK293T cell line model has gained considerable attention from the scientific community, particularly in the fields of engineering and drug delivery. Nevertheless, there is a dearth of systematic comparisons of the most prevalent EV isolation methodologies for HEK293T in terms of recovery and specificity.

View Article and Find Full Text PDF

Background: Disruption of the blood-brain barrier (BBB) in high-grade brain tumors is characterized by contrast accumulation on diagnostic imaging. This window of opportunity study correlates contrast imaging features with the tumor distribution of BBB-permeable (levetiracetam) and -impermeable (cefazolin) drugs.

Methods: Patients with a clinical diagnosis of a high-grade brain tumor underwent MRI for surgical planning.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is one of the most important concerns in the world, occurring for both Gram-positive and Gram-negative bacteria. () is a Gram-negative bacterium belonging to the family of Enterobacteriaceae and also plays an important role in development of nosocomial infections. Three forms have emerged as a result of AMR including multi-drug resistant (MDR), extensively drug-resistant, and pan-drug-resistant.

View Article and Find Full Text PDF

Microfluidic Microspheres Loaded with Aggregation-Induced Emission Nanomicelles for Theranostic Applications in Osteoarthritis.

Adv Healthc Mater

September 2025

State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China.

Osteoarthritis (OA) is a common degenerative joint disease, and early diagnosis and effective treatment are essential for managing its progression. This study focuses on the development of a novel drug delivery system using aggregation-induced emission (AIE) probe for enhanced fluorescence imaging and targeted therapy in OA. TPE-S-BTD, an AIE probe, is synthesized and characterized for its photophysical properties, demonstrating significant aggregation-induced fluorescence enhancement.

View Article and Find Full Text PDF