98%
921
2 minutes
20
Sepsis is a major public and global health concern. Every hour of delay in detecting sepsis significantly increases the risk of death, highlighting the importance of accurately predicting sepsis in a timely manner. A growing body of literature has examined developing new or improving the existing machine learning (ML) approaches for timely and accurate predictions of sepsis. This study contributes to this literature by providing clear insights regarding the role of the recency and adequacy of historical information in predicting sepsis using ML. To this end, we implemented a deep learning model using a bidirectional long short-term memory (BiLSTM) algorithm and compared it with six other ML algorithms based on numerous combinations of the prediction horizons (to capture information recency) and observation windows (to capture information adequacy) using different measures of predictive performance. Our results indicated that the BiLSTM algorithm outperforms all other ML algorithms and provides a great separability of the predicted risk of sepsis among septic versus non-septic patients. Moreover, decreasing the prediction horizon (in favor of information recency) always boosts the predictive performance; however, the impact of expanding the observation window (in favor of information adequacy) depends on the prediction horizon and the purpose of prediction. More specifically, when the prediction is responsive to the positive label (i.e., Sepsis), increasing historical data improves the predictive performance when the prediction horizon is short-moderate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8531301 | PMC |
http://dx.doi.org/10.1038/s41598-021-00220-x | DOI Listing |
Protein Cell
August 2025
Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200433, China.
Cardiovascular disease (CVD) research is hindered by limited comprehensive analyses of plasma proteome across disease subtypes. Here, we systematically investigated the associations between plasma proteins and cardiovascular outcomes in 53,026 UK Biobank participants over a 14-year follow-up. Association analyses identified 3,089 significant associations involving 892 unique protein analytes across 13 CVD outcomes.
View Article and Find Full Text PDFJ Ultrasound Med
September 2025
Evandro Chagas Infectious Diseases National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
Objectives: The risk of major venous thromboembolism (VTE) among patients with COVID-19 is high but varies with disease severity. Estimate the incidence of lower extremity deep venous thrombosis (DVT) in critically ill hospitalized patients with COVID-19, validate the Wells score for DVT diagnosis, and determine patients' prognosis.
Methods: This was an observational follow-up study in the context of the diagnosis and prognosis of DVT.
Stroke
September 2025
Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China (H.Z., K.H., Q.G.).
Background: Poststroke cognitive impairment (PSCI) affects 30% to 50% of stroke survivors, severely impacting functional outcomes and quality of life. This study uses functional near-infrared spectroscopy (fNIRS) to assess task-evoked brain activation and its potential for stratifying the severity in patients with PSCI.
Method: A cross-sectional study was conducted at Nanchong Central Hospital between June 2023 and April 2024.
ACS Catal
August 2025
Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States.
Chlorinated hydrocarbons are widely used as solvents and synthetic intermediates, but their chemical persistence can cause hazardous environmental accumulation. Haloalkane dehalogenase from (DhlA) is a bacterial enzyme that naturally converts toxic chloroalkanes into less harmful alcohols. Using a multiscale approach based on the empirical valence bond method, we investigate the catalytic mechanism of 1,2-dichloroethane dehalogenation within DhlA and its mutants.
View Article and Find Full Text PDFBackground And Aims: Dental caries in children remains a global health challenge. Fissure sealant therapy (FST) is an effective preventive measure, yet parental acceptance remains low. This study aimed to identify predictors of parental FST behavior for children aged 6-12 years in Bandar Abbas, Iran, using the health belief model (HBM).
View Article and Find Full Text PDF