Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The human immunodeficiency virus type 1 (HIV-1) trimeric envelope glycoprotein (Env) is heavily glycosylated, creating a dense glycan shield that protects the underlying peptidic surface from antibody recognition. The absence of conserved glycans, due to missing potential N-linked glycosylation sites (PNGS), can result in strain-specific, autologous neutralizing antibody (NAb) responses. Here, we sought to gain a deeper understanding of the autologous neutralization by introducing holes in the otherwise dense glycan shields of the AMC011 and AMC016 SOSIP trimers. Specifically, when we knocked out the N130 and N289 glycans, which are absent from the well-characterized B41 SOSIP trimer, we observed stronger autologous NAb responses. We also analyzed the highly variable NAb responses induced in rabbits by diverse SOSIP trimers from subtypes A, B, and C. Statistical analysis, using linear regression, revealed that the cumulative area exposed on a trimer by glycan holes correlates with the magnitude of the autologous NAb response. Forty years after the first description of HIV-1, the search for a protective vaccine is still ongoing. The sole target for antibodies that can neutralize the virus are the trimeric envelope glycoproteins (Envs) located on the viral surface. The glycoprotein surface is covered with glycans that shield off the underlying protein components from recognition by the immune system. However, the Env trimers of some viral strains have holes in the glycan shield. Immunized animals developed antibodies against such glycan holes. These antibodies are generally strain specific. Here, we sought to gain a deeper understanding of what drives these specific immune responses. First, we show that strain-specific neutralizing antibody responses can be increased by creating artificial holes in the glycan shield. Second, when studying a diverse set of Env trimers with different characteristics, we found that the surface area of the glycan holes contributes prominently to the induction of strain-specific neutralizing antibodies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8754230PMC
http://dx.doi.org/10.1128/JVI.01552-21DOI Listing

Publication Analysis

Top Keywords

glycan shield
12
nab responses
12
glycan holes
12
glycan
8
contributes prominently
8
prominently induction
8
autologous neutralization
8
trimeric envelope
8
dense glycan
8
neutralizing antibody
8

Similar Publications

Glycans are recognized as biomarkers and therapeutic targets. However, these molecules remain a critical blind spot in understanding post-translational modifications, particularly in vertebrate species inhabiting diverse habitats. The glycans present in tears play a crucial role in eye protection and may be one of the key factors in adapting to direct environmental contact.

View Article and Find Full Text PDF

Multifunctional materials with potential antiviral applications in face masks, face shields, and hydrogels against mpox virus.

Sci Rep

September 2025

Biomaterials and Bioengineering Lab, Department of Biotechnology, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46001, Spain.

The recent emergence and global spread of the mpox virus (MPXV), formerly known as the monkeypox virus, underscores the urgent need for effective antiviral materials to combat this emerging zoonotic pathogen. This study evaluates the antiviral activity of five functional material films against vaccinia virus, a representative model of MPXV, by the TCID50 assay. The tested materials include two electrospun polyester fabrics functionalised with benzalkonium chloride (BAK) or soap, specifically designed for antiviral face masks.

View Article and Find Full Text PDF

The capsule of () is highly heterogeneous based on the expression of distinct polysaccharides. transformation, controlled by the Com regulon, has been predominantly studied using unencapsulated laboratory strains. However, genomic studies revealed different rates of recombination events in clinical isolates of different serotypes.

View Article and Find Full Text PDF

The skin functions as a barrier shielding the human body from external stress. Damage to this barrier causes pain, swelling, blood and fluid loss, and exposes the underlying tissues to microbial contamination. While the body naturally initiates wound healing, the process is often slow, accompanied by scar formation and partial loss of skin functionality.

View Article and Find Full Text PDF

Glycan shielding enables TCR-sufficient allogeneic CAR-T therapy.

Cell

August 2025

Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing 102206,

Despite the success of autologous chimeric antigen receptor (CAR)-T cell therapy, achieving persistence and avoiding rejection in allogeneic settings remains challenging. We showed that signal peptide peptidase-like 3 (SPPL3) deletion enabled glycan-mediated immune evasion in primary T cells. SPPL3 deletion modified glycan profiles on T cells, restricted ligand accessibility, and reduced allogeneic immunity without compromising the functionality of anti-CD19 CAR molecules.

View Article and Find Full Text PDF