Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The rapid development of non-fullerene acceptors (NFAs) with strong near-infrared absorption has led to remarkably enhanced short-circuit current density () values in organic solar cells (OSCs). NFAs based on the benzotriazole (Bz) fused-ring π-core have great potential in delivering both high and decent open-circuit voltage values due to their strong intramolecular charge transfer with reasonably low energy loss. In this work, we have designed and synthesized a series of Bz-based NFAs, PN6SBO-4F, AN6SBO-4F and EHN6SEH-4F, regiospecific -alkyl engineering based on the high-performance NFA mBzS-4F that was reported previously. The molecular packing of mBzS-4F, AN6SBO-4F, and EHN6SEH-4F single crystals was analyzed using X-ray crystallography in order to provide a comprehensive understanding of the correlation between the molecular structure, the charge-transporting properties, and the solar cell performance. Compared with the typical honeycomb single-crystal structure of Y6 derivatives, these NFAs exhibit distinctly different molecular packing patterns. The strong interactions of terminal indanone groups in mBzS-4F and the -aggregate-like packing in EHN6SEH-4F lead to the formation of ordered 3D networks in single-crystals with channels for efficient charge transport. Consequently, OSCs based on mBzS-4F and EHN6SEH-4F show efficient photon-to-current conversions, achieving the highest power conversion efficiency of 17.48% with a of 28.83 mA cm.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1mh01127hDOI Listing

Publication Analysis

Top Keywords

molecular packing
12
regiospecific -alkyl
8
non-fullerene acceptors
8
an6sbo-4f ehn6seh-4f
8
-alkyl substitution
4
substitution tunes
4
molecular
4
tunes molecular
4
packing
4
packing high-performance
4

Similar Publications

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

The FtsEX-EnvC-AmiA/B system is a key component of the cell division machinery that directs breakage of the peptidoglycan layer during separation of daughter cells. Structural and mechanistic studies have shown that ATP binding by FtsEX in the cytoplasm drives periplasmic conformational changes in EnvC, which lead to the binding and activation of peptidoglycan amidases such as AmiA and AmiB. The FtsEX-EnvC amidase system is highly regulated to prevent cell lysis with at least two separate layers of autoinhibition that must be relieved to initiate peptidoglycan hydrolysis during division.

View Article and Find Full Text PDF

The crystal structure of a nitrate anion caged in spherical vanadium and oxygen structure surrounded by sodium hy-droxy and water solvent mol-ecules, systematic name poly[[hepta-deca-aqua-tetra-deca-oxidonona-sodium][penta-cosa-aqua-nitratoundeca-oxido-penta-deca-vanadium]], HNNaOV is reported. The complex crystallizes in the non-centrosymmetric space group and exhibits many inter- and intra-molecular hydrogen-bonding inter-actions. The complex contains V and V centres, which are six-coordinate or octa-hedrally coordinated.

View Article and Find Full Text PDF

The title compound, CHNO·Br·CBr, consists of one 4-formyl-,-di-methyl-benzenaminium bromide and a tetra-bromo-methane mol-ecule. In the crystal, the bromide ions link 4-formyl-,-di-methyl-benzenaminium moieties through inter-molecular C-H⋯Br and N-H⋯Br hydrogen bonds, while inter-molecular C-H⋯O hydrogen bonds link 4-formyl-,-di-methyl-benzenaminium cations, enclosing (18) ring motifs, into a di-periodic network structure. The tetra-bromo-methane mol-ecules fill the spaces between the layers.

View Article and Find Full Text PDF

In the mol-ecule of the title compound, CHNO, the isoxazol and phenyl rings are oriented at a dihedral angle of 14.84 (5)°. The 2-cyano-acrylate moiety is in - configuration.

View Article and Find Full Text PDF