Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soil aggregates constitute the basic units of the soil structure, and soil aggregate stability is an important indicator of soil erodibility. Successive planting of fast-growing plantations can change the erosion resistance of the soil under rainfall conditions. Pure Eucalyptus plantations in this study (first- to fourth-generations, i.e., I, II, III, and IV, respectively) were investigated. The stability and abrasion characteristics of soil aggregates were analyzed by the wet sieving method, the Le Bissonnais (LB) method and a slope flow scouring experiment. With an increase in successive generations of Eucalyptus, the soil bulk density increased, and the saturated water content, porosity, organic matter and Iron, Aluminum and Manganese (Fe-Al-Mn) oxide contents decreased. Additionally, the wet sieving results showed that the first- and second-generations had higher macroaggregate content than the fourth generation. The mean weight diameter (MWD) values decreased with the number of planting significantly. Based on fast wetting (FW), slow wetting (SW) and mechanical breakdown by shaking after pre-wetting (WS), the aggregate stability was ranked in a decreasing order as MWD > MWD > MWD. The relative dissipation index (RSI) and mechanical crushing index (RMI) increased with increasing number of planting generations. Aggregate stability was significantly negatively correlated with the soil bulk density and was significantly positively correlated with the organic matter and Fe-Mn oxide contents. The extent of aggregate abrasion (W/W) values and MWD values decreased with increasing scouring distance and slope gradient during the transport process. The α and W/W values of the scoured aggregates were significantly correlated with aggregate stability. Hence, with successive planting of Eucalyptus, the soil aggregate stability decreased, and the soil was prone to erosion when subjected to slope flow.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151000DOI Listing

Publication Analysis

Top Keywords

aggregate stability
24
soil aggregate
12
soil
11
eucalyptus plantations
8
soil aggregates
8
successive planting
8
wet sieving
8
slope flow
8
eucalyptus soil
8
soil bulk
8

Similar Publications

Magnetic nano-crosslinked lipase aggregates: Preparation and catalytic synthesis of OPO.

Int J Biol Macromol

September 2025

Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; Engineering Research Center for Smart Pharmaceutical Manufacturing Technologies, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China. Electronic addres

1,3-Dioleoyl-2-palmitoylglycerol (OPO) is crucial for infant nutrition; however, conventional immobilized lipase requires high-purity enzymes, which increases costs and limits industrial scalability. Herein, Rhizomucor miehei lipase (RML) was immobilized on surface-modified magnetic nanoparticles using cross-linked enzyme aggregates (CLEAs) technology to produce FeO@SiO@TPOAC@RML CLEAs. This approach combines the separation and immobilization of enzymes, allowing for the use of lower-purity lipase, which enhances its suitability for industrial-scale processes.

View Article and Find Full Text PDF

Emergent cooperative decision-making in triadic Prisoner's Dilemmas: Effects of incentives and information.

Acta Psychol (Amst)

September 2025

Department of Social Decision Science, Carnegie Mellon University, 4815 Frew Street, Pittsburgh, 15213, PA, United States of America.

While pairwise cooperation has been extensively studied through the Prisoner's Dilemma (PD), our understanding of how cooperation emerges in small groups remains limited. We extend the classic dyadic PD framework to a triadic framework, examining two sets of PD games per individual and how individual strategies and relationships aggregate to group cooperation. Through two experiments (N=519), we investigate: (1) how structural incentives shape cooperation by varying the K-index (0.

View Article and Find Full Text PDF

Strategic Design of Aptamer-Guided Aggregation-Induced Emission Nanoparticles for Targeted Photodynamic Therapy in Breast Cancer.

Adv Sci (Weinh)

September 2025

Department of Chemical and Biological Engineering, Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science & Technology, Hong Kong, 999077,

Breast cancer (BC), characterized by its heterogeneity and diverse subtypes, necessitates personalized treatment strategies. This study presents MF3Ec-TBPP nanoparticles (NPs) as a promising approach, integrating an aggregation-induced emission (AIE)-based photosensitizer, TBPP, with the MF3Ec aptamer to enhance targeted photodynamic therapy (PDT) for Luminal A subtype BC cells. The nanoparticles also feature a 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-poly(ethylene glycol) shell and dipalmitoyl phosphatidylcholine (DPPC), which stabilize the structure and inhibit singlet oxygen generation, effectively reducing off-target effects and protecting healthy tissues.

View Article and Find Full Text PDF

Transition of Structurally Distinct Amyloids in the Degradation of Protein Materials.

J Phys Chem B

September 2025

Chemistry Division, Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States.

Amyloid materials are formed from the aggregation of single proteins, yet contain polymorphisms where bulk properties are defined by a composition of multiple fibril types. Though desirable as a sustainable material, little is known about how various fibril types survive at high temperatures or in nonpolar solvents due to their highly similar molecular and nanoscale features. Here, we demonstrate that in situ two-dimensional infrared spectroscopy (2DIR), when paired with nanoscale microscopy, can determine the transition temperature of amyloid subpopulations without the use of labels.

View Article and Find Full Text PDF

The formation and recrystallization of ice crystals during freezing causes irreversible structural damage to the dough matrix, which is characterized by the cold denaturation of the gluten protein structure and the degradation of the gluten network structure. Polysaccharides are widely used to improve the quality of frozen dough owing to their excellent water-holding and viscosity. Current research has shown that polysaccharides mitigate the physical damage of ice crystals on the gluten protein structure mainly by modifying the water status of frozen dough to inhibit the ice crystallization process.

View Article and Find Full Text PDF