98%
921
2 minutes
20
Hypothalamic regulation of feeding and energy expenditure is a fundamental and evolutionarily conserved neurophysiological process critical for survival. Dysregulation of these processes, due to environmental or genetic causes, can lead to a variety of pathological conditions ranging from obesity to anorexia. Melanocortins and endogenous cannabinoids (eCBs) have been implicated in the regulation of feeding and energy homeostasis; however, the interaction between these signaling systems is poorly understood. Here, we show that the eCB 2-arachidonoylglycerol (2-AG) regulates the activity of melanocortin 4 receptor (MC4R) cells in the paraventricular nucleus of the hypothalamus (PVN) via inhibition of afferent GABAergic drive. Furthermore, the tonicity of eCBs signaling is inversely proportional to energy state, and mice with impaired 2-AG synthesis within MC4R neurons weigh less, are hypophagic, exhibit increased energy expenditure, and are resistant to diet-induced obesity. These mice also exhibit MC4R agonist insensitivity, suggesting that the energy state-dependent, 2-AG-mediated suppression of GABA input modulates PVN neuron activity to effectively respond to the MC4R natural ligands to regulate energy homeostasis. Furthermore, post-developmental disruption of PVN 2-AG synthesis results in hypophagia and death. These findings illustrate a functional interaction at the cellular level between two fundamental regulators of energy homeostasis, the melanocortin and eCB signaling pathways in the hypothalamic feeding circuitry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545488 | PMC |
http://dx.doi.org/10.1073/pnas.2015990118 | DOI Listing |
Nature
September 2025
Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
Small cell lung cancer (SCLC) is a highly aggressive type of lung cancer, characterized by rapid proliferation, early metastatic spread, frequent early relapse and a high mortality rate. Recent evidence has suggested that innervation has an important role in the development and progression of several types of cancer. Cancer-to-neuron synapses have been reported in gliomas, but whether peripheral tumours can form such structures is unknown.
View Article and Find Full Text PDFTrends Immunol
September 2025
Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, 10 Center Drive, 12N248C, Bethesda, MD 20892, USA. Electronic address:
Autoimmune diseases arise from genetic and environmental factors that disrupt immune tolerance. Recent studies highlight the role of myeloid cell immunometabolism, particularly mitochondrial dysfunction, in driving autoimmunity. Mitochondria regulate energy homeostasis and cell fate; their impairment leads to defective immune cell differentiation, abnormal effector activity, and chronic inflammation.
View Article and Find Full Text PDFMethods Cell Biol
September 2025
Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile. Electronic address:
Obesity is a multifactorial disease characterized by excessive accumulation of adipose tissue, resulting from an imbalance between energy intake and expenditure. Mouse models have emerged as invaluable tools for elucidating the complex genetic, environmental, and physiological mechanisms driving to obesity. This chapter provides an overview of the methodologies employed to establish and study obesity in mice, highlighting their relevance to human disease.
View Article and Find Full Text PDFExp Eye Res
September 2025
School of Basic Medicine, Qingdao University, Qingdao, Shandong Province, 266071, China; Department of Ophthalmology, Qingdao Eighth People's Hospital, Qingdao, Shandong Province, 266121, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shan
Mitochondria play a crucial role in energy production and are intimately associated with ocular function. Mitochondrial dysfunction can trigger oxidative stress and inflammation, adversely affecting key ocular structures such as the lacrimal gland, lens, retina, and trabecular meshwork. This dysfunction may compromise the barrier properties of the trabecular meshwork, impeding aqueous humour outflow, elevating intraocular pressure, and resulting in optic nerve damage and primary open-angle glaucoma.
View Article and Find Full Text PDFAdv Physiol Educ
September 2025
Department of Biochemistry, All India Institute of Medical Sciences, Deoghar, India. Email id:
In this article, "Cosmosis" introduces a newly coined metaphorical term that illustrates conceptual parallels between the physiological process of osmosis and the expansive dynamics of the cosmos. Designed as an interdisciplinary teaching framework, Cosmosis provides a novel way to link cellular homeostasis with cosmological principles such as entropy, spacetime curvature, and dark energy. By drawing on core physiological terms such as concentration gradients, osmotic pressure, aquaporins, and membrane selectivity, Cosmosis offers an analogy that may spark curiosity, support integrative thinking, and encourage cross-disciplinary dialogue in physiology and biochemistry education.
View Article and Find Full Text PDF