98%
921
2 minutes
20
Linerixibat, an oral small-molecule ileal bile acid transporter inhibitor under development for cholestatic pruritus in primary biliary cholangitis, was designed for minimal absorption from the intestine (site of pharmacological action). This study characterized the pharmacokinetics, absorption, metabolism, and excretion of [C]-linerixibat in humans after an intravenous microtracer concomitant with unlabeled oral tablets and [C]-linerixibat oral solution. Linerixibat exhibited absorption-limited flip-flop kinetics: longer oral versus intravenous half-life (6-7 hours vs. 0.8 hours). The short intravenous half-life was consistent with high systemic clearance (61.9 l/h) and low volume of distribution (16.3 l). In vitro studies predicted rapid hepatic clearance via cytochrome P450 3A4 metabolism, which predicted human hepatic clearance within 1.5-fold. However, linerixibat was minimally metabolized in humans after intravenous administration: ∼80% elimination via biliary/fecal excretion (>90%-97% as unchanged parent) and ∼20% renal elimination by glomerular filtration (>97% as unchanged parent). Absolute oral bioavailability of linerixibat was exceedingly low (0.05%), primarily because of a very low fraction absorbed (0.167%; fraction escaping first-pass gut metabolism (fg) ∼100%), with high hepatic extraction ratio (77.0%) acting as a secondary barrier to systemic exposure. Oral linerixibat was almost entirely excreted (>99% recovered radioactivity) in feces as unchanged and unabsorbed linerixibat. Consistent with the low oral fraction absorbed and ∼20% renal recovery of intravenous [C]-linerixibat, urinary elimination of orally administered radioactivity was negligible (<0.04% of dose). Linerixibat unequivocally exhibited minimal gastrointestinal absorption and oral systemic exposure. Linerixibat represents a unique example of high CYP3A4 clearance in vitro but nearly complete excretion as unchanged parent drug via the biliary/fecal route. SIGNIFICANCE STATEMENT: This study conclusively established minimal absorption and systemic exposure to orally administered linerixibat in humans. The small amount of linerixibat absorbed was eliminated efficiently as unchanged parent drug via the biliary/fecal route. The hepatic clearance mechanism was mispredicted to be mediated via cytochrome P450 3A4 metabolism in vitro rather than biliary excretion of unchanged linerixibat in vivo.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/dmd.121.000595 | DOI Listing |
ACS Sens
September 2025
School of Physics and Electric Engineering, Linyi University, Linyi 276000, China.
In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.
View Article and Find Full Text PDFJ Craniofac Surg
September 2025
Division of Plastic Surgery, Stanford University School of Medicine, Stanford.
Background: Spring-mediated cranioplasty (SMC) is a safe and effective treatment for craniosynostosis. The authors describe the largest cohort of endoscopic SMC for coronal craniosynostosis to date, highlighting the evolution of their technique.
Methods: The authors retrospectively reviewed patients who underwent endoscopic coronal suturectomy and SMC between 2017 and 2023.
J Craniofac Surg
September 2025
Department of Oral and Maxillofacial Surgery, University of Ulsan Hospital, University of Ulsan College of Medicine.
This study aimed to develop a deep-learning model for the automatic classification of mandibular fractures using panoramic radiographs. A pretrained convolutional neural network (CNN) was used to classify fractures based on a novel, clinically relevant classification system. The dataset comprised 800 panoramic radiographs obtained from patients with facial trauma.
View Article and Find Full Text PDFJ Med Chem
September 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.
Resistance-conferring mutations in the androgen receptor (AR) ligand-binding pocket (LBP) compromise the effectiveness of clinically approved orthosteric AR antagonists. Targeting the dimerization interface pocket (DIP) of AR presents a promising therapeutic approach. In this study, we report the design and optimization of -(thiazol-2-yl) furanamide derivatives as novel AR DIP antagonists, among which was the most promising candidate.
View Article and Find Full Text PDFCardiol Rev
September 2025
Departments of Cardiology and Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY.
Patients with atrial fibrillation, venous thrombosis, and mechanical heart valve (MHV) regularly undergo procedures on a daily basis, for which they require bridging anticoagulation, but this poses significant challenges. Bridging anticoagulation involves temporary interruption of long-term anticoagulation therapy for procedures and continued overlap with short-acting anticoagulants during perioperative period. Heparin-based agents are often used for overlapping in perioperative period to reduce the risk of thromboembolism, but the evidence for benefit particularly in patients with MHV remains limited.
View Article and Find Full Text PDF